13,131 research outputs found

    A Faster Method to Estimate Closeness Centrality Ranking

    Get PDF
    Closeness centrality is one way of measuring how central a node is in the given network. The closeness centrality measure assigns a centrality value to each node based on its accessibility to the whole network. In real life applications, we are mainly interested in ranking nodes based on their centrality values. The classical method to compute the rank of a node first computes the closeness centrality of all nodes and then compares them to get its rank. Its time complexity is O(n⋅m+n)O(n \cdot m + n), where nn represents total number of nodes, and mm represents total number of edges in the network. In the present work, we propose a heuristic method to fast estimate the closeness rank of a node in O(α⋅m)O(\alpha \cdot m) time complexity, where α=3\alpha = 3. We also propose an extended improved method using uniform sampling technique. This method better estimates the rank and it has the time complexity O(α⋅m)O(\alpha \cdot m), where α≈10−100\alpha \approx 10-100. This is an excellent improvement over the classical centrality ranking method. The efficiency of the proposed methods is verified on real world scale-free social networks using absolute and weighted error functions

    Degree Ranking Using Local Information

    Get PDF
    Most real world dynamic networks are evolved very fast with time. It is not feasible to collect the entire network at any given time to study its characteristics. This creates the need to propose local algorithms to study various properties of the network. In the present work, we estimate degree rank of a node without having the entire network. The proposed methods are based on the power law degree distribution characteristic or sampling techniques. The proposed methods are simulated on synthetic networks, as well as on real world social networks. The efficiency of the proposed methods is evaluated using absolute and weighted error functions. Results show that the degree rank of a node can be estimated with high accuracy using only 1%1\% samples of the network size. The accuracy of the estimation decreases from high ranked to low ranked nodes. We further extend the proposed methods for random networks and validate their efficiency on synthetic random networks, that are generated using Erd\H{o}s-R\'{e}nyi model. Results show that the proposed methods can be efficiently used for random networks as well

    Estimating Node Importance in Knowledge Graphs Using Graph Neural Networks

    Full text link
    How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.Comment: KDD 2019 Research Track. 11 pages. Changelog: Type 3 font removed, and minor updates made in the Appendix (v2

    Locating influential nodes via dynamics-sensitive centrality

    Get PDF
    With great theoretical and practical significance, locating influential nodes of complex networks is a promising issues. In this paper, we propose a dynamics-sensitive (DS) centrality that integrates topological features and dynamical properties. The DS centrality can be directly applied in locating influential spreaders. According to the empirical results on four real networks for both susceptible-infected-recovered (SIR) and susceptible-infected (SI) spreading models, the DS centrality is much more accurate than degree, kk-shell index and eigenvector centrality.Comment: 6 pages, 1 table and 2 figure

    Local Ranking Problem on the BrowseGraph

    Full text link
    The "Local Ranking Problem" (LRP) is related to the computation of a centrality-like rank on a local graph, where the scores of the nodes could significantly differ from the ones computed on the global graph. Previous work has studied LRP on the hyperlink graph but never on the BrowseGraph, namely a graph where nodes are webpages and edges are browsing transitions. Recently, this graph has received more and more attention in many different tasks such as ranking, prediction and recommendation. However, a web-server has only the browsing traffic performed on its pages (local BrowseGraph) and, as a consequence, the local computation can lead to estimation errors, which hinders the increasing number of applications in the state of the art. Also, although the divergence between the local and global ranks has been measured, the possibility of estimating such divergence using only local knowledge has been mainly overlooked. These aspects are of great interest for online service providers who want to: (i) gauge their ability to correctly assess the importance of their resources only based on their local knowledge, and (ii) take into account real user browsing fluxes that better capture the actual user interest than the static hyperlink network. We study the LRP problem on a BrowseGraph from a large news provider, considering as subgraphs the aggregations of browsing traces of users coming from different domains. We show that the distance between rankings can be accurately predicted based only on structural information of the local graph, being able to achieve an average rank correlation as high as 0.8
    • …
    corecore