121 research outputs found

    Modeling, Analysis, Force Sensing and Control of Continuum Robots for Minimally Invasive Surgery

    Get PDF
    This dissertation describes design, modeling and application of continuum robotics for surgical applications, specifically parallel continuum robots (PCRs) and concentric tube manipulators (CTMs). The introduction of robotics into surgical applications has allowed for a greater degree of precision, less invasive access to more remote surgical sites, and user-intuitive interfaces with enhanced vision systems. The most recent developments have been in the space of continuum robots, whose exible structure create an inherent safety factor when in contact with fragile tissues. The design challenges that exist involve balancing size and strength of the manipulators, controlling the manipulators over long transmission pathways, and incorporating force sensing and feedback from the manipulators to the user. Contributions presented in this work include: (1) prototyping, design, force sensing, and force control investigations of PCRs, and (2) prototyping of a concentric tube manipulator for use in a standard colonoscope. A general kinetostatic model is presented for PCRs along with identification of multiple physical constraints encountered in design and construction. Design considerations and manipulator capabilities are examined in the form of matrix metrics and ellipsoid representations. Finally, force sensing and control are explored and experimental results are provided showing the accuracy of force estimates based on actuation force measurements and control capabilities. An overview of the design requirements, manipulator construction, analysis and experimental results are provided for a CTM used as a tool manipulator in a traditional colonoscope. Currently, tools used in colonoscopic procedures are straight and exit the front of the scope with 1 DOF of operation (jaws of a grasper, tightening of a loop, etc.). This research shows that with a CTM deployed, the dexterity of these tools can be increased dramatically, increasing accuracy of tool operation, ease of use and safety of the overall procedure. The prototype investigated in this work allows for multiple tools to be used during a single procedure. Experimental results show the feasibility and advantages of the newly-designed manipulators

    Modeling and Control of Steerable Ablation Catheters

    Get PDF
    Catheters are long, flexible tubes that are extensively used in vascular and cardiac interventions, e.g., cardiac ablation, coronary angiography and mitral valve annuloplasty. Catheter-based cardiac ablation is a well-accepted treatment for atrial fibrillation, a common type of cardiac arrhythmia. During this procedure, a steerable ablation catheter is guided through the vasculature to the left atrium to correct the signal pathways inside the heart and restore normal heart rhythm. The outcome of the ablation procedure depends mainly on the correct positioning of the catheter tip at the target location inside the heart and also on maintaining a consistent contact between the catheter tip and cardiac tissue. In the presence of cardiac and respiratory motions, achieving these goals during the ablation procedure is very challenging without proper 3D visualization, dexterous control of the flexible catheter and an estimate of the catheter tip/tissue contact force. This research project provides the required basis for developing a robotics-assisted catheter manipulation system with contact force control for use in cardiac ablation procedures. The behavior of the catheter is studied in free space as well in contact with the environment to develop mathematical models of the catheter tip that are well suited for developing control systems. The validity of the proposed modeling approaches and the performance of the suggested control techniques are evaluated experimentally. As the first step, the static force-deflection relationship for ablation catheters is described with a large-deflection beam model and an optimized pseudo-rigid-body 3R model. The proposed static model is then used in developing a control system for controlling the contact force when the catheter tip is interacting with a static environment. Our studies also showed that it is possible to estimate the tip/tissue contact force by analyzing the shape of the catheter without installing a force sensor on the catheter. During cardiac ablation, the catheter tip is in contact with a relatively fast moving environment (cardiac tissue). Robotic manipulation of the catheter has the potential to improve the quality of contact between the catheter tip and cardiac tissue. To this end, the frequency response of the catheter is investigated and a control technique is proposed to compensate for the cardiac motion and to maintain a constant tip/tissue contact force. Our study on developing a motion compensated robotics-assisted catheter manipulation system suggests that redesigning the actuation mechanism of current ablation catheters would provide a major improvement in using these catheters in robotics-assisted cardiac ablation procedures

    Learning-Based Control Strategies for Soft Robots: Theory, Achievements, and Future Challenges

    Get PDF
    In the last few decades, soft robotics technologies have challenged conventional approaches by introducing new, compliant bodies to the world of rigid robots. These technologies and systems may enable a wide range of applications, including human-robot interaction and dealing with complex environments. Soft bodies can adapt their shape to contact surfaces, distribute stress over a larger area, and increase the contact surface area, thus reducing impact forces

    Semiautonomous Robotic Manipulator for Minimally Invasive Aortic Valve Replacement

    Get PDF
    Aortic valve surgery is the preferred procedure for replacing a damaged valve with an artificial one. The ValveTech robotic platform comprises a flexible articulated manipulator and surgical interface supporting the effective delivery of an artificial valve by teleoperation and endoscopic vision. This article presents our recent work on force-perceptive, safe, semiautonomous navigation of the ValveTech platform prior to valve implantation. First, we present a force observer that transfers forces from the manipulator body and tip to a haptic interface. Second, we demonstrate how hybrid forward/inverse mechanics, together with endoscopic visual servoing, lead to autonomous valve positioning. Benchtop experiments and an artificial phantom quantify the performance of the developed robot controller and navigator. Valves can be autonomously delivered with a 2.0±0.5 mm position error and a minimal misalignment of 3.4±0.9°. The hybrid force/shape observer (FSO) algorithm was able to predict distributed external forces on the articulated manipulator body with an average error of 0.09 N. FSO can also estimate loads on the tip with an average accuracy of 3.3%. The presented system can lead to better patient care, delivery outcome, and surgeon comfort during aortic valve surgery, without requiring sensorization of the robot tip, and therefore obviating miniaturization constraints.</p

    Design and Modeling of Multi-Arm Continuum Robots

    Get PDF
    Continuum robots are snake-like systems able to deliver optimal therapies to pathologies deep inside the human cavity by following 3D complex paths. They show promise when anatomical pathways need to be traversed thanks to their enhanced flexibility and dexterity and show advantages when deployed in the field of single-port surgery. This PhD thesis concerns the development and modelling of multi-arm and hybrid continuum robots for medical interventions. The flexibility and steerability of the robot’s end-effector are achieved through concentric tube technology and push/pull technology. Medical robotic prototypes have been designed as proof of concepts and testbeds of the proposed theoretical works.System design considers the limitations and constraints that occur in the surgical procedures for which the systems were proposed for. Specifically, two surgical applications are considered. Our first prototype was designed to deliver multiple tools to the eye cavity for deep orbital interventions focusing on a currently invasive intervention named Optic Nerve Sheath Fenestration (ONSF). This thesis presents the end-to-end design, engineering and modelling of the prototype. The developed prototype is the first suggested system to tackle the challenges (limited workspace, need for enhanced flexibility and dexterity, danger for harming tissue with rigid instruments, extensive manipulation of the eye) arising in ONSF. It was designed taking into account the clinical requirements and constraints while theoretical works employing the Cosserat rod theory predict the shape of the continuum end-effector. Experimental runs including ex vivo experimental evaluations, mock-up surgical scenarios and tests with and without loading conditions prove the concept of accessing the eye cavity. Moreover, a continuum robot for thoracic interventions employing push/pull technology was designed and manufactured. The developed system can reach deep seated pathologies in the lungs and access regions in the bronchial tree that are inaccessible with rigid and straight instruments either robotically or manually actuated. A geometrically exact model of the robot that considers both the geometry of the robot and mechanical properties of the backbones is presented. It can predict the shape of the bronchoscope without the constant curvature assumption. The proposed model can also predict the robot shape and micro-scale movements accurately in contrast to the classic geometric model which provides an accurate description of the robot’s differential kinematics for large scale movements

    The mechanics of continuum robots: model-based sensing and control

    Get PDF

    Design, Development and Force Control of a Tendon-driven Steerable Catheter with a Learning-based Approach

    Get PDF
    In this research, a learning-based force control schema for tendon-driven steerable catheters with the application in robot-assisted tissue ablation procedures was proposed and validated. To this end, initially a displacement-based model for estimating the contact force between the catheter and tissue was developed. Afterward, a tendon-driven catheter was designed and developed. Next, a software-hardware-integrated robotic system for controlling and monitoring the pose of the catheter was designed and developed. Also, a force control schema was developed based on the developed contact force model as a priori knowledge. Furthermore, the position control of the tip of the catheter was performed using a learning-based inverse kinematic approach. By combining the position control and the contact model, the force control schema was developed and validated. Validation studies were performed on phantom tissue as well as excised porcine tissue. Results of the validation studies showed that the proposed displacement-based model was 91.5% accurate in contact force prediction. Also, the system was capable of following a set of desired trajectories with an average root-mean-square error of less than 5%. Further validation studies revealed that the system could fairly generate desired static and dynamic force profiles on the phantom tissue. In summary, the proposed force control system did not necessitate the utilization of force sensors and could fairly contribute in automatizing the ablation task for robotic tissue ablation procedures

    Design and analysis of a soft spiral gripper

    Get PDF
    Continuum robots have been gaining popularity in recent years for their umpteen advantages. Soft robots are a class of continuum robots which are made of squishy materials which have the added benefit of being innocuous to humans. Soft robotic grippers are one of the major application of soft robots as they have the ability to conform and adapt their structure to the object to be grasped. This work presents a bio-inspired technique to increase contact area while grasping and handling long slender objects by helically twisting around them. An embodiment of such a spiral gripper utilizes unique configurations of pneumatically actuated Fiber Reinforced Elastomeric Enclosures which has a range of motions like extension, rotation, contraction. This work presents a detailed analysis technique using Cosserat beam theory to estimate the normal contact force exerted by the spiral gripper on cylindrical objects
    • …
    corecore