109 research outputs found

    A Comparison of Signal Analysis Techniques for the Diagnostics of the IMS Rolling Element Bearing Dataset

    Get PDF
    In this paper, a comparison of signal analysis techniques for the diagnostics of rolling element bearings is carried out. Specifically, the comparison is performed in terms of fault detection, diagnosis and prognosis techniques with regards to the first rolling element bearing dataset released by NASA IMS Center in 2014. As for fault detection, it is obtained that RMS value, Kurtosis and Detectivity, as statistical parameters, are able to properly detect the arising of the fault on the defective bearings. Then, several signal processing techniques, such as deterministic/random signal separation, time-frequency and cyclostationary analyses are applied to perform fault diagnosis. Among these techniques, it is found that the combination of Cepstrum Pre-Whitening and Squared Envelope Spectrum, and Improved Envelope Spectrum, allow the faults to be correctly identified on specific bearing components. Finally, the Correlation, Monotonicity and Robustness of the previous statistical parameters are computed to identify the most accurate tools for bearing fault prognosis

    Vibration-based Fault Diagnostics in Wind Turbine Gearboxes Using Machine Learning

    Get PDF
    A significantly increased production of wind energy offers a path to achieve the goals of green energy policies in the United States and other countries. However, failures in wind turbines and specifically their gearboxes are higher due to their operation in unpredictable wind conditions that result in downtime and losses. Early detection of faults in wind turbines will greatly increase their reliability and commercial feasibility. Recently, data-driven fault diagnosis techniques based on deep learning have gained significant attention due to their powerful feature learning capabilities. Nonetheless, diagnosing faults in wind turbines operating under varying conditions poses a major challenge. Signal components unrelated to faults and high levels of noise obscure the signature generated by early-stage damage. To address this issue, we propose an innovative fault diagnosis framework that utilizes deep learning and leverages cyclostationary analysis of sensor data. By generating cyclic spectral coherence maps from the sensor data, we can emphasize fault-related signatures. These 2D color map representations are then used to train convolutional neural networks capable of detecting even minor faults and early-stage damages. The proposed method is evaluated using test data obtained from multibody dynamic simulations conducted under various operating conditions. The benchmark test cases, inspired by an NREL study, are successfully detected using our approach. To further enhance the accuracy of the model, subsequent studies employ Convolutional Neural Networks with Local Interpretable Model-Agnostic Explanations (LIME). This approach aids in interpreting classifier predictions and developing an interpretable classifier by focusing on a subset range of cyclic spectral coherence maps that carry the unique fault signatures. This improvement contributes to better accuracy, especially in scenarios involving multiple faults in the gearbox that need to be identified. Moreover, to address the challenge of applying this framework in practical settings, where standard deep learning techniques tend to provide inaccurate predictions for unseen faults or unusual operating conditions, we investigate fault diagnostics using a Bayesian convolutional neural network. This approach incorporates uncertainty bounds into prediction results, reducing overconfident misclassifications. The results demonstrate the effectiveness of the Bayesian approach in fault diagnosis, offering valuable implications for condition monitoring in other rotating machinery applications

    Fault Detection in Rotating Machinery: Vibration analysis and numerical modeling

    Get PDF
    This thesis investigates vibration based machine condition monitoring and consists of two parts: bearing fault diagnosis and planetary gearbox modeling. In the first part, a new rolling element bearing diagnosis technique is introduced. Envelope analysis is one of the most advantageous methods for rolling element bearing diagnostics but finding the suitable frequency band for demodulation has been a substantial challenge for a long time. Introduction of the Spectral Kurtosis (SK) and Kurtogram mostly solved this problem but in situations where signal to noise ratio is very low or in presence of non-Gaussian noise these methods will fail. This major drawback may noticeably decrease their effectiveness and goal of this thesis is to overcome this problem. Vibration signals from rolling element bearings exhibit high levels of 2nd order cyclostationarity, especially in the presence of localized faults. A second-order cyclostationary signal is one whose autocovariance function is a periodic function of time: the proposed method, named Autogram by the authors, takes advantage of this property to enhance the conventional Kurtogram. The method computes the kurtosis of the unbiased autocorrelation (AC) of the squared envelope of the demodulated and undecimated signal, rather than the kurtosis of the filtered time signal. Moreover, to take advantage of unique features of the lower and upper portions of the AC, two modified forms of kurtosis are introduced and the resulting colormaps are called Upper and Lower Autogram. In addition, a new thresholding method is also proposed to enhance the quality of the frequency spectrum analysis. Finally, the proposed method is tested on experimental data and compared with literature results so to assess its performances in rolling element bearing diagnostics. Moreover, a second novel method for diagnosis of rolling element bearings is developed. This approach is a generalized version of the cepstrum pre-whitening (CPW) which is a simple and effective technique for bearing diagnosis. The superior performance of the proposed method has been shown on two real case data. For the first case, the method successfully extracts bearing characteristic frequencies related to two defected bearings from the acquired signal. Moreover, the defect frequency was highlighted in case two, even in presence of strong electromagnetic interference (EMI). The second part presents a newly developed lumped parameter model (LPM) of a planetary gear. Planets bearings of planetary gear sets exhibit high rate of failure; detection of these faults which may result in catastrophic breakdowns have always been challenging. Another objective of this thesis is to investigate the planetary gears vibration properties in healthy and faulty conditions. To seek this goal a previously proposed lumped parameter model (LPM) of planetary gear trains is integrated with a more comprehensive bearing model. This modified LPM includes time varying gear mesh and bearing stiffness and also nonlinear bearing stiffness due to the assumption of Hertzian contact between the rollers/balls and races. The proposed model is completely general and accepts any inner/outer race bearing defect location and profile in addition to its original capacity of modelling cracks and spalls of gears; therefore, various combinations of gears and bearing defects are also applicable. The model is exploited to attain the dynamic response of the system in order to identify and analyze localized faults signatures for inner and outer races as well as rolling elements of planets bearings. Moreover, bearing defect frequencies of inner/outer race and ball/roller and also their sidebands are discussed thoroughly. Finally, frequency response of the system for different sizes of planets bearing faults are compared and statistical diagnostic algorithms are tested to investigate faults presence and growth

    Passive Localization of 3D Near-Field Cyclostationary Sources Using Parallel Factor Analysis

    Get PDF
    By exploiting favorable characteristics of a uniform cross-array, a passive localization algorithm of narrowband cyclostationary sources in the spherical coordinates (azimuth, elevation, and range) is proposed. Firstly, we construct a parallel factor (PARAFAC) analysis model by computing the third-order cyclic moment matrices of the properly chosen sensor outputs. Then, we analyze the uniqueness of the constructed model and obtain three-dimensional (3D) near-field parameters via trilinear alternating least squares regression (TALS). The investigated algorithm is well suitable for the localization of the near-field cyclostationary sources. In addition, it avoids the multidimensional search and pairing parameters. Results of computer simulations are carried out to confirm the satisfactory performance of the proposed method

    Gear wear-monitoring using acoustic emission

    Full text link
    Acoustic emission (AE) signals have shown strong potential for gear wear monitoring, because of their capability of capturing high-frequency characteristics of tribological contacts. Gear AE signals are characterised by: i) short-time features coming from the complex surface micro-structure (asperities) and ii) slower cyclic features introduced by the gear kinematics. The combination of both properties has not been exploited yet, thus leaving a significant margin for the development of AE-based gear monitoring. This thesis hence aims at developing novel AE-based gear wear monitoring tools through the investigation of the statistical properties of gear AE as well as the physical relationships between signals and gear surface conditions. This research is organised in three steps to deliver the following objectives. Step 1 is to establish the relationship between AE signals and cyclic gear kinematics, modelled using AE cyclostationarity. Differently from the next steps, this approach purposely avoids an onerous physical model, and instead uses non-Gaussian statistics to represent the micro-structure effects on AE. Results show that the newly-developed cyclic AE features are highly correlated with wear severity. The physical modelling is tackled in step 2, which investigates the link between AE and micro-scale surface conditions, independently on gear kinematics. Two available physical models for dry contact are extended to lubricated sliding, and then tested on tribometer discs with different surface finishing. The pin-on-disc configuration avoids the complex gear kinematics, facilitating the direct study of surface effects under stable speed and load. The new physical model was able to reliably estimate roughness in a series of tests with different operating conditions. In the final step, the gear-kinematic effects modelled in step 1 are superimposed to the physical relationship between surface and signals observed in step 2 for a further investigation on the relationship between AE and gear wear. A set of experiments on degrading gears has proven that the proposed techniques are able to track gear wear along tooth profiles as it evolves in time. Furthermore, this study contributed to the understanding of the impact of surface characteristics on specific AE features, opening new avenues for further developments of AE-based gear wear monitoring

    Vibration Monitoring: Gearbox identification and faults detection

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Condition Monitoring Methods for Large, Low-speed Bearings

    Get PDF
    In all industrial production plants, well-functioning machines and systems are required for sustained and safe operation. However, asset performance degrades over time and may lead to reduced effiency, poor product quality, secondary damage to other assets or even complete failure and unplanned downtime of critical systems. Besides the potential safety hazards from machine failure, the economic consequences are large, particularly in offshore applications where repairs are difficult. This thesis focuses on large, low-speed rolling element bearings, concretized by the main swivel bearing of an offshore drilling machine. Surveys have shown that bearing failure in drilling machines is a major cause of rig downtime. Bearings have a finite lifetime, which can be estimated using formulas supplied by the bearing manufacturer. Premature failure may still occur as a result of irregularities in operating conditions and use, lubrication, mounting, contamination, or external environmental factors. On the contrary, a bearing may also exceed the expected lifetime. Compared to smaller bearings, historical failure data from large, low-speed machinery is rare. Due to the high cost of maintenance and repairs, the preferred maintenance arrangement is often condition based. Vibration measurements with accelerometers is the most common data acquisition technique. However, vibration based condition monitoring of large, low-speed bearings is challenging, due to non-stationary operating conditions, low kinetic energy and increased distance from fault to transducer. On the sensor side, this project has also investigated the usage of acoustic emission sensors for condition monitoring purposes. Roller end damage is identified as a failure mode of interest in tapered axial bearings. Early stage abrasive wear has been observed on bearings in drilling machines. The failure mode is currently only detectable upon visual inspection and potentially through wear debris in the bearing lubricant. In this thesis, multiple machine learning algorithms are developed and applied to handle the challenges of fault detection in large, low-speed bearings with little or no historical data and unknown fault signatures. The feasibility of transfer learning is demonstrated, as an approach to speed up implementation of automated fault detection systems when historical failure data is available. Variational autoencoders are proposed as a method for unsupervised dimensionality reduction and feature extraction, being useful for obtaining a health indicator with a statistical anomaly detection threshold. Data is collected from numerous experiments throughout the project. Most notably, a test was performed on a real offshore drilling machine with roller end wear in the bearing. To replicate this failure mode and aid development of condition monitoring methods, an axial bearing test rig has been designed and built as a part of the project. An overview of all experiments, methods and results are given in the thesis, with details covered in the appended papers.publishedVersio

    Sensor array signal processing : two decades later

    Get PDF
    Caption title.Includes bibliographical references (p. 55-65).Supported by Army Research Office. DAAL03-92-G-115 Supported by the Air Force Office of Scientific Research. F49620-92-J-2002 Supported by the National Science Foundation. MIP-9015281 Supported by the ONR. N00014-91-J-1967 Supported by the AFOSR. F49620-93-1-0102Hamid Krim, Mats Viberg

    Tracking the severity of naturally developed spalls in rolling element bearings

    Full text link
    Condition monitoring of rolling element bearing is vital for condition-based maintenance (CBM) in many industries. A key obstacle at present is the ability to accurately quantify the severity of the bearing faults, which is commonly measured in terms of the bearing defect size. Limitations of previous studies in the area include: (i) most accelerometer-based approaches were developed for artificial bearing faults instead of naturally developed spalls, and (ii) a systematic comparison between accelerometers and alternative measurements is not available. Therefore, this thesis aims at obtaining effective methods to estimate and track the growth of bearing spalls. This has been achieved by both advancing the processing of accelerometer signals and exploiting the capabilities of alternative measurements. Firstly, a novel approach based on accelerometers is proposed, which utilises natural frequency perturbations to estimate spall size. By comparing it with the well-established existing methods, it was found that all methods are effective for artificial spalls, but only the newly proposed approach is successful for naturally developed faults. Then, three alternative measurements (acoustic emission, instantaneous angular speed, and radial load) are investigated and benchmarked against acceleration on UNSW’s bearing test rig. It was found that radial load was far superior in fault-size estimation comparing to all other sensors, and achieved more precise results than accelerometers with less complex processing. This was justified considering radial load as a proxy for radial displacement, whose potential was recently suggested by theoretical studies. To confirm this, in the last part of this work, actual displacement sensors (proximity probes) were installed on the bearing test rig and a larger gearbox facility. Both experiments demonstrated that the proposed displacement approach can effectively estimate the size of natural spalls, with very limited signal processing required. This thesis has therefore provided three significant novel contributions to the field of bearing fault severity assessment: (i) the development of a new acceleration-based approach, effective on natural spalls for the first time, (ii) the collection and analysis of a new and comprehensive database of alternative measurements, obtained on naturally developed spalls, (iii) the discovery of the superior effectiveness of direct displacement measurements
    • …
    corecore