95,818 research outputs found

    PREDICTION OF CRUDE OIL VISCOSITY USING FEED-FORWARD BACK-PROPAGATION NEURAL NETWORK (FFBPNN)

    Get PDF
    Crude oil viscosity is an important governing parameter of fluid flow both in the porous media and in pipelines. So, estimating the oil viscosity at various operating conditions with accuracy is of utmost importance to petroleum engineers. Usually, oil viscosity is determined by laboratory measurements at reservoir temperature. However, laboratory experiments are rather expensive and in most cases, the data from such experiments are not reliable. So, petroleum engineers prefer to use published correlations but these correlations are either too simple or too complex and so many of them are region-based not generic. To tackle the above enumerated drawbacks, in this paper, a Feed-Forward Back-Propagation Neural Network (FFBPNN) model has been developed to estimate the crude oil viscosity (μo) of Undersaturated reservoirs in the Niger Delta region of Nigeria. The newly developed FFBPNN model shows good results compared to the existing empirical correlations. The μo FFBPNN model achieved an average absolute relative error of 0.01998 and the correlation coefficient (R2) of 0.999 compared to the existing empirical correlations. From the performance plots for the FFBPNN model and empirical correlations against their experimental values, the FFBPNN model's performance was excellent

    Crowd Counting with Decomposed Uncertainty

    Full text link
    Research in neural networks in the field of computer vision has achieved remarkable accuracy for point estimation. However, the uncertainty in the estimation is rarely addressed. Uncertainty quantification accompanied by point estimation can lead to a more informed decision, and even improve the prediction quality. In this work, we focus on uncertainty estimation in the domain of crowd counting. With increasing occurrences of heavily crowded events such as political rallies, protests, concerts, etc., automated crowd analysis is becoming an increasingly crucial task. The stakes can be very high in many of these real-world applications. We propose a scalable neural network framework with quantification of decomposed uncertainty using a bootstrap ensemble. We demonstrate that the proposed uncertainty quantification method provides additional insight to the crowd counting problem and is simple to implement. We also show that our proposed method exhibits the state of the art performances in many benchmark crowd counting datasets.Comment: Accepted in AAAI 2020 (Main Technical Track

    Neural system identification for large populations separating "what" and "where"

    Full text link
    Neuroscientists classify neurons into different types that perform similar computations at different locations in the visual field. Traditional methods for neural system identification do not capitalize on this separation of 'what' and 'where'. Learning deep convolutional feature spaces that are shared among many neurons provides an exciting path forward, but the architectural design needs to account for data limitations: While new experimental techniques enable recordings from thousands of neurons, experimental time is limited so that one can sample only a small fraction of each neuron's response space. Here, we show that a major bottleneck for fitting convolutional neural networks (CNNs) to neural data is the estimation of the individual receptive field locations, a problem that has been scratched only at the surface thus far. We propose a CNN architecture with a sparse readout layer factorizing the spatial (where) and feature (what) dimensions. Our network scales well to thousands of neurons and short recordings and can be trained end-to-end. We evaluate this architecture on ground-truth data to explore the challenges and limitations of CNN-based system identification. Moreover, we show that our network model outperforms current state-of-the art system identification models of mouse primary visual cortex.Comment: NIPS 201

    A recurrent neural network for classification of unevenly sampled variable stars

    Full text link
    Astronomical surveys of celestial sources produce streams of noisy time series measuring flux versus time ("light curves"). Unlike in many other physical domains, however, large (and source-specific) temporal gaps in data arise naturally due to intranight cadence choices as well as diurnal and seasonal constraints. With nightly observations of millions of variable stars and transients from upcoming surveys, efficient and accurate discovery and classification techniques on noisy, irregularly sampled data must be employed with minimal human-in-the-loop involvement. Machine learning for inference tasks on such data traditionally requires the laborious hand-coding of domain-specific numerical summaries of raw data ("features"). Here we present a novel unsupervised autoencoding recurrent neural network (RNN) that makes explicit use of sampling times and known heteroskedastic noise properties. When trained on optical variable star catalogs, this network produces supervised classification models that rival other best-in-class approaches. We find that autoencoded features learned on one time-domain survey perform nearly as well when applied to another survey. These networks can continue to learn from new unlabeled observations and may be used in other unsupervised tasks such as forecasting and anomaly detection.Comment: 23 pages, 14 figures. The published version is at Nature Astronomy (https://www.nature.com/articles/s41550-017-0321-z). Source code for models, experiments, and figures at https://github.com/bnaul/IrregularTimeSeriesAutoencoderPaper (Zenodo Code DOI: 10.5281/zenodo.1045560
    • …
    corecore