500 research outputs found

    Run-time parallelization and scheduling of loops

    Get PDF
    The class of problems that can be effectively compiled by parallelizing compilers is discussed. This is accomplished with the doconsider construct which would allow these compilers to parallelize many problems in which substantial loop-level parallelism is available but cannot be detected by standard compile-time analysis. We describe and experimentally analyze mechanisms used to parallelize the work required for these types of loops. In each of these methods, a new loop structure is produced by modifying the loop to be parallelized. We also present the rules by which these loop transformations may be automated in order that they be included in language compilers. The main application area of the research involves problems in scientific computations and engineering. The workload used in our experiment includes a mixture of real problems as well as synthetically generated inputs. From our extensive tests on the Encore Multimax/320, we have reached the conclusion that for the types of workloads we have investigated, self-execution almost always performs better than pre-scheduling. Further, the improvement in performance that accrues as a result of global topological sorting of indices as opposed to the less expensive local sorting, is not very significant in the case of self-execution

    Evaluating Speedup in Parallel Compilers

    Get PDF
    Parallel programming is prevalent in every field mainly to speed up computation. Advancements in multiprocessor technology fuel this trend toward parallel programming. However, modern compilers are still largely single threaded and do not take advantage of the machine resources available to them. There has been a lot of work done on compilers that add parallel constructs to the programs they are compiling, enabling programs to exploit parallelism at run time. Auto parallelization of loops by a compiler is one such example. Researchers have done very little work towards parallelizing the compilation process itself. The research done here focuses on parallel compilers that target computation speedup by parallelizing the process of program compilation during the lexical analysis and semantic analysis phase. Parallelization brings along with it issues like synchronization, concurrency and communication overhead. In the semantic analysis phase, these issues are of particular relevance during the construction of the symbol table. Research done on a concurrent compiler developed at the University of Toronto in 1991 proposed three techniques to address the generation of the symbol table [Seshadri91]. The goal here is to implement a parallel compiler using concepts from those techniques as references. The research done here will augment the work done formerly and measure the performance speedup obtained

    ParaSCAN: A Static Profiler to Help Parallelization

    Get PDF
    Parallelizing software often starts by profiling to identify program paths that are worth parallelizing. Static profiling techniques, e.g. hot paths, can be used to identify parallelism opportunities for programs that lack representative inputs and in situations where dynamic techniques aren\u27t applicable, e.g. parallelizing compilers and refactoring tools. Existing static techniques for identification of hot paths rely on path frequencies. Relying on path frequencies alone isn\u27t sufficient for identifying parallelism opportunities. We propose a novel automated approach for static profiling that combines both path frequencies and computational weight of the paths. We apply our technique called ParaSCAN to parallelism recommendation, where it is highly effective. Our results demonstrate that ParaSCAN\u27s recommendations cover all the parallelism manually identified by experts with 85% accuracy and in some cases also identifies parallelism missed by the experts

    Parallelizing irregular and pointer-based computations automatically: perspectives from logic and constraint programming

    Get PDF
    Irregular computations pose sorne of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures, which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. Starting in the mid 80s there has been significant progress in the development of parallelizing compilers for logic pro­gramming (and more recently, constraint programming) resulting in quite capable paralle­lizers. The typical applications of these paradigms frequently involve irregular computations, and make heavy use of dynamic data structures with pointers, since logical variables represent in practice a well-behaved form of pointers. This arguably makes the techniques used in these compilers potentially interesting. In this paper, we introduce in a tutoríal way, sorne of the problems faced by parallelizing compilers for logic and constraint programs and provide pointers to sorne of the significant progress made in the area. In particular, this work has resulted in a series of achievements in the areas of inter-procedural pointer aliasing analysis for independence detection, cost models and cost analysis, cactus-stack memory management, techniques for managing speculative and irregular computations through task granularity control and dynamic task allocation such as work-stealing schedulers), etc

    Run-time scheduling and execution of loops on message passing machines

    Get PDF
    Sparse system solvers and general purpose codes for solving partial differential equations are examples of the many types of problems whose irregularity can result in poor performance on distributed memory machines. Often, the data structures used in these problems are very flexible. Crucial details concerning loop dependences are encoded in these structures rather than being explicitly represented in the program. Good methods for parallelizing and partitioning these types of problems require assignment of computations in rather arbitrary ways. Naive implementations of programs on distributed memory machines requiring general loop partitions can be extremely inefficient. Instead, the scheduling mechanism needs to capture the data reference patterns of the loops in order to partition the problem. First, the indices assigned to each processor must be locally numbered. Next, it is necessary to precompute what information is needed by each processor at various points in the computation. The precomputed information is then used to generate an execution template designed to carry out the computation, communication, and partitioning of data, in an optimized manner. The design is presented for a general preprocessor and schedule executer, the structures of which do not vary, even though the details of the computation and of the type of information are problem dependent

    IDRA (IDeal Resource Allocation): Computing ideal speedups in parallel logic programming

    Get PDF
    We present a technique to estimate accurate speedups for parallel logic programs with relative independence from characteristics of a given implementation or underlying parallel hardware. The proposed technique is based on gathering accurate data describing one execution at run-time, which is fed to a simulator. Alternative schedulings are then simulated and estimates computed for the corresponding speedups. A tool implementing the aforementioned techniques is presented, and its predictions are compared to the performance of real systems, showing good correlation

    Autotuning for Automatic Parallelization on Heterogeneous Systems

    Get PDF

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 90's cannot enjoy an increased level of autonomy without the efficient use of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real time demands are met for large expert systems. Speed-up via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial labs in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems was surveyed. The survey is divided into three major sections: (1) multiprocessors for parallel expert systems; (2) parallel languages for symbolic computations; and (3) measurements of parallelism of expert system. Results to date indicate that the parallelism achieved for these systems is small. In order to obtain greater speed-ups, data parallelism and application parallelism must be exploited
    • …
    corecore