130 research outputs found

    Feasibility study for a numerical aerodynamic simulation facility. Volume 1

    Get PDF
    A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation

    Cost and benefits design optimization model for fault tolerant flight control systems

    Get PDF
    Requirements and specifications for a method of optimizing the design of fault-tolerant flight control systems are provided. Algorithms that could be used for developing new and modifying existing computer programs are also provided, with recommendations for follow-on work

    Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    Get PDF
    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    Health management system for rocket engines

    Get PDF
    The functional framework of a failure detection algorithm for the Space Shuttle Main Engine (SSME) is developed. The basic algorithm is based only on existing SSME measurements. Supplemental measurements, expected to enhance failure detection effectiveness, are identified. To support the algorithm development, a figure of merit is defined to estimate the likelihood of SSME criticality 1 failure modes and the failure modes are ranked in order of likelihood of occurrence. Nine classes of failure detection strategies are evaluated and promising features are extracted as the basis for the failure detection algorithm. The failure detection algorithm provides early warning capabilities for a wide variety of SSME failure modes. Preliminary algorithm evaluation, using data from three SSME failures representing three different failure types, demonstrated indications of imminent catastrophic failure well in advance of redline cutoff in all three cases

    Secure Communication in Disaster Scenarios

    Get PDF
    Während Naturkatastrophen oder terroristischer Anschläge ist die bestehende Kommunikationsinfrastruktur häufig überlastet oder fällt komplett aus. In diesen Situationen können mobile Geräte mithilfe von drahtloser ad-hoc- und unterbrechungstoleranter Vernetzung miteinander verbunden werden, um ein Notfall-Kommunikationssystem für Zivilisten und Rettungsdienste einzurichten. Falls verfügbar, kann eine Verbindung zu Cloud-Diensten im Internet eine wertvolle Hilfe im Krisen- und Katastrophenmanagement sein. Solche Kommunikationssysteme bergen jedoch ernsthafte Sicherheitsrisiken, da Angreifer versuchen könnten, vertrauliche Daten zu stehlen, gefälschte Benachrichtigungen von Notfalldiensten einzuspeisen oder Denial-of-Service (DoS) Angriffe durchzuführen. Diese Dissertation schlägt neue Ansätze zur Kommunikation in Notfallnetzen von mobilen Geräten vor, die von der Kommunikation zwischen Mobilfunkgeräten bis zu Cloud-Diensten auf Servern im Internet reichen. Durch die Nutzung dieser Ansätze werden die Sicherheit der Geräte-zu-Geräte-Kommunikation, die Sicherheit von Notfall-Apps auf mobilen Geräten und die Sicherheit von Server-Systemen für Cloud-Dienste verbessert

    Application-Driven Wireless Sensor Networks

    Get PDF
    The growth of wireless networks has resulted in part from requirements for connecting people and advances in radio technologies. Recently there has been an increasing trend towards enabling the Internet-of-Things (IoT). Thousands of tiny devices interacting with their environments are being inter-networked and made accessible through the Internet. For that purpose, several communications protocols have been defined making use of the IEEE 802.15.4 Physical and MAC layers. The 6LoWPAN Network Layer adaptation protocol is an example which bridges the gap between low power devices and the IP world. Since its release, the design of routing protocols became increasingly important and the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) emerged as the IETF proposed standard protocol for IPv6-based multi-hop Wireless Sensor Networks (WSN). This thesis considers that the sensor nodes form a large IPv6 network making use of above technologies and protocols, and that the sensor nodes are enabled to run one or more applications. It is also assumed that the applications and the sensor nodes to which they are associated, are not always active, alternating between active and inactive states. The thesis aims to design a new energy efficient communications solution for WSN by exploring the hypothesis that the network is aware of the traffic generated by the applications running in the sensor nodes. Therefore, the thesis provides two major contributions: 1) a cross-layer mechanism using application layer and network layer information to constrainRPL-defined routing trees (RPL-BMARQ); 2) an Application-Driven WSN node synchronization mechanism for RPL-BMARQ. RPL-BMARQ is designed as an extension to the RPLrouting protocol using information shared by the application and routing layers to construct Directed Acyclic Graphs (DAGs), allowing the nodes to select parents with respect to the applications they run. By jointly considering the neighbors of each node, the applications each node runs, and the forwarding capabilities of a node, we provide a communications solution which enables the data of every application and sensor node to be transferred, while keeping the overall energy consumed low by reducing the time the nodes are active and reducing the total number of multicast packets exchanged. Therefore, RPL-BMARQ helps reducing the network energy consumption since it restricts radio communication activities while maintaining throughput fairness and packet reception ratio high. The mechanism was evaluated using four scenarios with different network topologies and compared against "standard RPL". The results obtained show that the mechanism enables lower energy consumption since the nodes are more often put a sleep, reducing the total number of packets exchanged, while maintaining fairness and query success rates high. The Application-Driven WSN node synchronization mechanism for RPL-BMARQ was designed to maintain the sensor nodes synchronized according to the duty cycle of the applications they run. The mechanism jointly uses cross-layer information and the Exponentially Weighted Moving Average (EWMA) technique for calculating in run-time average network delays which are used to control the time the sensor nodes would sleep in the next cycle in order to wake up just before the next activity period starts. This mechanism enables all the sensor nodes to go asleep and to wake up in synchronism. The mechanism was theoretically evaluated and simulated, and the results obtained show that the synchronization mechanism works as previewed. The results also showed that, when designing WSN applications with this mechanism, the nodes not involved in communications are kept sleeping as much as possible, waking up when necessary and in synchronism. In order to confirm the validity of the mechanisms designed, we also tested them in real environments where the results were confirmed

    Performance of Computer Systems; Proceedings of the 4th International Symposium on Modelling and Performance Evaluation of Computer Systems, Vienna, Austria, February 6-8, 1979

    Get PDF
    These proceedings are a collection of contributions to computer system performance, selected by the usual refereeing process from papers submitted to the symposium, as well as a few invited papers representing significant novel contributions made during the last year. They represent the thrust and vitality of the subject as well as its capacity to identify important basic problems and major application areas. The main methodological problems appear in the underlying queueing theoretic aspects, in the deterministic analysis of waiting time phenomena, in workload characterization and representation, in the algorithmic aspects of model processing, and in the analysis of measurement data. Major areas for applications are computer architectures, data bases, computer networks, and capacity planning. The international importance of the area of computer system performance was well reflected at the symposium by participants from 19 countries. The mixture of participants was also evident in the institutions which they represented: 35% from universities, 25% from governmental research organizations, but also 30% from industry and 10% from non-research government bodies. This proves that the area is reaching a stage of maturity where it can contribute directly to progress in practical problems
    corecore