144 research outputs found

    Sensitivity of ecosystem net primary productivity models to remotely sensed leaf area index in a montane forest environment

    Get PDF
    xii, 181 leaves : ill. ; 28 cm.Net primary productivity (NPP) is a key ecological parameter that is important in estimating carbon stocks in large forested areas. NPP is estimated using models of which leaf area index (LAI) is a key input. This research computes a variety of ground-based and remote sensing LAI estimation approaches and examines the impact of these estimates on modeled NPP. A relative comparison of ground-based LAI estimates from optical and allometric techniques showed that the integrated LAI-2000 and TRAC method was preferred. Spectral mixture analysis (SMA), accounting for subpixel influences on reflectance, outperformed vegetation indices in LAI prediction from remote sensing. LAI was shown to be the most important variable in modeled NPP in the Kananaskis, Alberta region compared to soil water content (SWC) and climate inputs. The variability in LAI and NPP estimates were not proportional, from which a threshold was suggested where first LAI is limiting than water availability

    Puistute takseertunnuste hindamine aerolidari mÔÔtmisandmete pÔhjal hemiboreaalsetes metsades

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in Forestry.Forest management and planning requires up-to-date data, which commonly is acquired using field experts and ground measurements. Nowadays, more and more of data about forest stands is measured using remotely sensing methods. Most common methods include aerial photography and laser scanning from airplanes, also spectral measurements from satellites or even drone images and applications. This doctoral thesis focuses on developing applications and methods for utilising the airborne laser scanning (ALS) data that is freely available for the whole Estonia. The ALS measurements are carried out by the Estonian Land Board on a routine basis twice a year – in spring and summer. The first variable that was studied in this thesis was forest height. Based on the thesis, the most reliable method for forest height assessment was using the ALS point-cloud 80th height percentile (HP80). The small circular plot (radius of 15
30 m) and stand based studies showed high correlations with the field-measured forest heights and with great confidence it can be said, that ALS-based forest height estimations are close or even with higher accuracy, than field inspected. The second studied variable was standing wood volume. The ALS-based methods and models that were developed throughout this thesis used the idea, that standing wood volume is based on forest height and density. For this the HP80 and a threshold-based point count ratio was used (canopy cover - CC). ALS-based CC (CCALS) estimates were studied and compared with digital hemispherical photo based measurements. The results showed similar errors as were shown in other similar studies, with around 10-15% root mean square error (RMSE). The strongest correlation was shown using all echoes above a 1.3 metre threshold. Combining the CCALS and HP80 showed standing wood volume estimates with a similar error as we would receive from field measurements (<20%). The freely available multitemporal ALS data showed promising results for forest height growth monitoring and detecting small-scale disturbances. CCALS was shown to have strong predictive value, when compared with a four year difference in thinned and unthinned stands. The nation-wide ALS data can also be combined with forest height predictions from satellites, providing a faster update compared to the ALS data. Promising results were shown using the interferometric synthetic aperture radar (InSAR). Stand species maps generated using self-learning algorithms and satellite based spectral data can be used for developing species specific models of standing wood volume prediction. By combining these different datasets we can construct a nation-wide forest resource to help make better decisions for forest management and targeting fieldwork.Metsades majandamisotsuste langetamiseks ja metsamajanduslike tööde planeerimiseks on metsaomanikel vaja andmeid. HarjumuspĂ€raselt on andmete kogumiseks tehtud metsas maapealseid mÔÔtmisi. Viimastel aastakĂŒmnetel on metsade inventeerimiseks ĂŒha enam aga kasutatud mittekontaktseid mÔÔtmisi - lennukitelt tehtavad aerofotosid, laserskaneerimist, satelliitidelt tehtavaid kiirgusmÔÔtmisi vĂ”i viimastel aastatel ka droonidelt tehtud pilte. Antud doktoritöö on vĂ”tnud fookusesse aerolaserskaneerimise (ALS) andmete pĂ”hjal Eesti metsadesse sobilike rakenduste vĂ€ljatöötamise. ALS mÔÔtmisi teeb Eesti Maa-amet rutiinsete lendude kĂ€igus kaks korda aastas, nii kevadel kui ka suvel. Aastast 2008 alustatud mÔÔtmiste tulemusel on Eesti ĂŒks vĂ€heseid riike maailmas, kus on vabalt kasutada mitmekordselt kogu riiki kattev ALS andmestik. Doktoritöö tulemusel töötati vĂ€lja metsa kĂ”rguse hindamiseks sobilikud meetodid, kasutades selleks punktipilvede kĂ”rgusprotsentiile. Tugevamaid seoseid metsas proovitĂŒkkidel mÔÔdetud kĂ”rgustega nĂ€itas punktipilve 80-protsentiil (HP80) ja uuringute pĂ”hjal vĂ”ib vĂ€ita, et metsa kĂ”rguse mÀÀramine suvistelt aerolidari andmetelt on ligilĂ€hedane tĂ€psustele, mida saadakse metsas kohapeal mÔÔtes. Teine oluline tunnus, mida metsade majandamise planeerimisel silmas peetakse, on kasvava metsa tagavara. Teadustöö pĂ”hjal töötati vĂ€lja mudelite kujud ja metoodika, mille abil prognoositud tagavara oli sarnase veapiiriga, mis on lubatud metsas hinnanguid tegevatele taksaatoritele (<20%). VĂ€ljatöötatud ALS-pĂ”hine mudeli kuju jĂ€rgib loogikat, et metsa tagavara on otseselt seotud mÔÔdetud kĂ”rguse ja metsa tihedusega. Tihenduse hindamiseks aerolidari andmetelt kasutatakse nivoopĂ”hist punktide suhtearvu ehk nn katvushinnangut (CCALS). Katvushinnangu tĂ€psuse valideerimiseks ja tihedas metsas sobiva prognoosimeetodi vĂ€ljatöötamiseks tehti vĂ€limÔÔtmisi kasutades poolsfÀÀrikaameraid. PoolsfÀÀripiltide pĂ”hjal tehtud valideerimise tulemused andsid sarnaseid veahinnanguid, mida on ka varasemates teadusuuringutes esitletud (RMSE = 10
15%). Kahe sarnasest fenoloogilisest perioodist ALS andmestiku lahutamisel uuriti ka muutuste tuvastamise vĂ”imalikkust. Uuringud andsid paljulubavaid tulemusi metsade kĂ”rguskasvu hindamiseks ja CCALS osutus ka oluliseks tunnuseks vĂ€iksemate hĂ€iringute, nagu nĂ€iteks harvendusraie, tuvastamiseks. Kogu riiki katva ALS andmestiku kombineerimisel erinevate satelliitandmetega vĂ”i nĂ€iteks spektraalsete mÔÔtmiste pĂ”hjal tehtud puistu liigiliste koosseisu kaartidega on vĂ”imalik antud töös vĂ€lja pakutud meetodite abil anda igal aastal kogu Eesti metsaressursside ĂŒlevaade. Samuti on vĂ”imalik koostada vaid kaugseirevahendeid ja proovitĂŒkkidel lĂ€hendatud mudeleid kasutades eraldiste pĂ”hised takseerkirjeldused, mida siis taksaatorid saavad nĂ€iteks kasutada oma vĂ€litööde kavandamisel.  Publication of this thesis is supported by the Estonian University of Life Sciences

    귌접 표멎 원êČ© 섌싱 시슀템듀을 읎용한 지속적 ì‹ëŹŒ êł„ì ˆ 및 태양 유도 ì—œëĄì†Œ í˜•êŽ‘ëŹŒì§ˆ êŽ€ìžĄ

    Get PDF
    í•™ìœ„ë…ŒëŹž(ë°•ì‚Ź) -- 서욞대학ꔐ대학원 : 환êČœëŒ€í•™ì› í˜‘ë™êłŒì • ìĄ°êČœí•™, 2022.2. ë„˜ì˜ë Ź.Monitoring phenology, physiological and structural changes in vegetation is essential to understand feedbacks of vegetation between terrestrial ecosystems and the atmosphere by influencing the albedo, carbon flux, water flux and energy. To this end, normalized difference vegetation index (NDVI) and solar-induced chlorophyll fluorescence (SIF) from satellite remote sensing have been widely used. However, there are still limitations in satellite remote sensing as 1) satellite imagery could not capture fine-scale spatial resolution of SIF signals, 2) satellite products are strongly influenced by condition of the atmosphere (e.g. clouds), thus it is challenging to know physiological and structural changes in vegetation on cloudy days and 3) satellite imagery captured a mixed signal from over- and understory, thus it is difficult to study the difference between overstory and understory phenology separately. Therefore, in order to more accurately understand the signals observed from the satellite, further studies using near-surface remote sensing system to collect ground-based observed data are needed. The main purpose of this dissertation is continuous observation of vegetation phenology and SIF using near-surface remote sensing system. To achieve the main goal, I set three chapters as 1) developing low-cost filter-based near-surface remote sensing system to monitor SIF continuously, 2) monitoring SIF in a temperate evergreen needleleaf forest continuously, and 3) understanding the relationships between phenology from in-situ multi-layer canopies and satellite products. In Chapter 2, I developed the filter-based smart surface sensing system (4S-SIF) to overcome the technical challenges of monitoring SIF in the field as well as to decrease sensor cost for more comprehensive spatial sampling. I verified the satisfactory spectral performance of the bandpass filters and confirmed that digital numbers (DN) from 4S-SIF exhibited linear relationships with the DN from the hyperspectral spectroradiometer in each band (R2 > 0.99). In addition, we confirmed that 4S-SIF shows relatively low variation of dark current value at various temperatures. Furthermore, the SIF signal from 4S-SIF represents a strong linear relationship with QEpro-SIF either changing the physiological mechanisms of the plant using DCMU (3-(3, 4-dichlorophenyl)-1, 1-dimethyurea) treatment. I believe that 4S-SIF will be a useful tool for collecting in-situ data across multiple spatial and temporal scales. Satellite-based SIF provides us with new opportunities to understand the physiological and structural dynamics of vegetation from canopy to global scales. However, the relationships between SIF and gross primary productivity (GPP) are not fully understood, which is mainly due to the challenges of decoupling structural and physiological factors that control the relationships. In Chapter 3, I reported the results of continuous observations of canopy-level SIF, GPP, absorbed photosynthetically active radiation (APAR), and chlorophyll: carotenoid index (CCI) in a temperate evergreen needleleaf forest. To understand the mechanisms underlying the relationship between GPP and SIF, I investigated the relationships of light use efficiency (LUE_p), chlorophyll fluorescence yield (Ί_F), and the fraction of emitted SIF photons escaping from the canopy (f_esc) separately. I found a strongly non-linear relationship between GPP and SIF at diurnal and seasonal time scales (R2 = 0.91 with a hyperbolic regression function, daily). GPP saturated with APAR, while SIF did not. In addition, there were differential responses of LUE_p and Ί_F to air temperature. While LUE_p reached saturation at high air temperatures, Ί_F did not saturate. I also found that the canopy-level chlorophyll: carotenoid index was strongly correlated to canopy-level Ί_F (R2 = 0.84) implying that Ί_F could be more closely related to pigment pool changes rather than LUE_p. In addition, I found that the f_esc contributed to a stronger SIF-GPP relationship by partially capturing the response of LUE_p to diffuse light. These findings can help refine physiological and structural links between canopy-level SIF and GPP in evergreen needleleaf forests. We do not fully understand what satellite NDVI derived leaf-out and full leaf dates actually observe because deciduous broadleaf forest consists of multi-layer canopies typically and mixed-signal from multi-layer canopies could affect satellite observation. Ultimately, we have the following question: What phenology do we actually see from space compared to ground observations on multi-layer canopy phenology? In Chapter 4, I reported the results of 8 years of continuous observations of multi-layer phenology and climate variables in a deciduous broadleaf forest, South Korea. Multi-channel spectrometers installed above and below overstory canopy allowed us to monitor over- and understory canopy phenology separately, continuously. I evaluated the widely used phenology detection methods, curvature change rate and threshold with NDVI observed above top of the canopy and compared leaf-out and full leaf dates from both methods to in-situ observed multi-layer phenology. First, I found that NDVI from the above canopy had a strong linear relationship with satellites NDVI (R2=0.95 for MODIS products and R2= 0.85 for Landsat8). Second, leaf-out dates extracted by the curvature change rate method and 10% threshold were well matched with understory leaf-out dates. Third, the full-leaf dates extracted by the curvature change rate method and 90% threshold were similar to overstory full-leaf dates. Furthermore, I found that overstory leaf-out dates were closely correlated to accumulated growing degree days (AGDD) while understory leaf-out dates were related to AGDD and also sensitive to the number of chill days (NCD). These results suggest that satellite-based leaf-out and full leaf dates represent understory and overstory signals in the deciduous forest site, which requires caution when using satellite-based phenology data into future prediction as overstory and understory canopy show different sensitivities to AGDD and NCD.ì‹ëŹŒ êł„ì ˆ 및 식생의 ìƒëŠŹí•™ì , ê”ŹìĄ°ì ìž ëł€í™”ë„Œ ì§€ì†ì ìœŒëĄœ ëȘšë‹ˆí„°ë§ 하는 êČƒì€ ìœĄìƒìƒíƒœêł„ì™€ 대Ʞ권 ì‚ŹìŽì˜ 에너지, 탄소 순환 등의 플드백을 읎핎하는데 필수적읎닀. 읎넌 êŽ€ìžĄí•˜êž° ìœ„í•˜ì—Ź 위성에서 êŽ€ìžĄëœ 정규화 식생 지수 (NDVI) 태양 유도 ì—œëĄì†Œ í˜•êŽ‘ëŹŒì§ˆ (SIF)는 ëŒ€ì€‘ì ìœŒëĄœ ì‚Źìš©ë˜êł  있닀. ê·žëŸŹë‚˜, ìš°ìŁŒ 위성 Ʞ반의 ìžëŁŒëŠ” ë‹€ìŒêłŒ 같은 í•œêł„ì ë“€ìŽ ìĄŽìžŹí•œë‹€. 1) 아직êčŒì§€ êł í•Žìƒë„ì˜ 위성 êž°ë°˜ SIF ìžëŁŒëŠ” ì—†êł , 2) 위성 ìžëŁŒë“€ì€ 대Ʞ의 질 (예, ê”ŹëŠ„)에 영햄을 받아, 흐늰 날의 식생의 ìƒëŠŹí•™ì , ê”ŹìĄ°ì  ëł€í™”ë„Œ 탐지하Ʞ 힘듀닀. 또한, 3) 위성 ìŽëŻžì§€ëŠ” 상부 ì‹ìƒêłŒ 하부 식생읎 혌합되얎 섞읞 신혞넌 탐지하Ʞ ë•ŒëŹžì—, 각 잔의 ì‹ëŹŒ êł„ì ˆì„ 각각 ì—°ê”Źí•˜êž°ì— 얎렀움읎 있닀. ê·žëŸŹëŻ€ëĄœ, 위성에서 탐지한 신혞넌 í‰ê°€í•˜êł , 식생의 ìƒëŠŹí•™ì , ê”ŹìĄ°ì  ëł€í™”ë„Œ 볎닀 정확히 읎핎하Ʞ 위핎서는 귌접 표멎 원êČ© 섌싱 시슀템을 읎용한 ì‹€ìžĄ ìžëŁŒ Ʞ반의 ì—°ê”Źë“€ìŽ ìš”ê”Źëœë‹€. ëłž í•™ìœ„ë…ŒëŹžì˜ ìŁŒ ëȘ©ì ì€ 귌접 표멎 원êČ© 섌싱 시슀템을 ìŽìš©í•˜ì—Ź ì‹ëŹŒ êł„ì ˆ 및 SIFë„Œ 현임에서 ì§€ì†ì ìœŒëĄœ ì‹€ìžĄí•˜êł , 위성 영상 Ʞ반의 ì—°ê”Źê°€ ê°–êł  있는 í•œêł„ì  및 궁ꞈ슝듀을 핮êČ° 및 ëłŽì™„í•˜ëŠ” êČƒìŽë‹€. 읎 ëȘ©ì ì„ ë‹Źì„±í•˜êž° ìœ„í•˜ì—Ź, 아래와 같은 섞가지 Chapter: 1) SIFë„Œ êŽ€ìžĄí•˜êž° 위한 필터 Ʞ반의 저렎한 귌접 표멎 섌싱 시슀템 개발, 2)옚대 ìčšì—œìˆ˜ëŠŒì—ì„œì˜ 연속적읞 SIF êŽ€ìžĄ, 3)위성 Ʞ반의 ì‹ëŹŒ êł„ì ˆêłŒ ì‹€ìžĄí•œ 닀잔 식생의 ì‹ëŹŒ êł„ì ˆ ëč„ê”ëĄœ ê”Źì„±í•˜êł , 읎넌 진행하였닀. SIF는 식생의 ê”ŹìĄ°ì , ìƒëŠŹí•™ì  ëł€í™”ë„Œ ìŽí•Ží•˜êł , 추정하는 ìžìžëĄœ ì‚Źìš©ë  수 있얎, SIFë„Œ 현임에서 êŽ€ìžĄí•˜êž° 위한 닀양한 귌접 표멎 원êČ© 섌싱 시슀템듀읎 씜귌 제시되얎 ì˜€êł  있닀. ê·žëŸŹë‚˜, 아직êčŒì§€ SIFë„Œ êŽ€ìžĄí•˜êž° 위한 ìƒì—…ì ìœŒëĄœ 유톔되는 êŽ€ìžĄ 시슀템은 현저히 ë¶€ìĄ±í•˜ë©°, ë¶„êŽ‘êł„ì˜ ê”ŹìĄ°ì  íŠč성상 현임에서 êŽ€ìžĄ 시슀템을 ëłŽì • 및 êŽ€ëŠŹí•˜êž°ê°€ 얎렀워 높은 질의 SIFë„Œ 췚득하는 êČƒì€ 맀우 도전 적읞 분알읎닀. ëłž 학위 ë…ŒëŹžì˜ Chapter 2에서는 SIFë„Œ 현임에서 볎닀 손쉜êȌ êŽ€ìžĄí•˜êž° 위한 필터 Ʞ반의 귌접 표멎 섌싱 시슀템(Smart Surface Sensing System, 4S-SIF)을 개발하였닀. 섌서는 대역 í•„í„°ë“€êłŒ íŹí† ë‹€ìŽì˜€ë“œê°€ êČ°í•©ë˜ì–Ž 있윌며, ì„œëłŽ ëȘší„°ë„Œ ì‚Źìš©í•˜ì—Ź 대역 필터 및 êŽ€ìžĄ 방햄을 ìžë™ì ìœŒëĄœ 변êČœí•šìœŒëĄœìš, 한 개의 íŹí† ë‹€ìŽì˜€ë“œê°€ 3개의 파임 ëČ”ìœ„(757, 760, 770 nm)의 ëč› ë° íƒœì–‘ìœŒëĄœë¶€í„° ìž…ì‚Źë˜ëŠ” êŽ‘ëŸ‰êłŒ ì‹ìƒìœŒëĄœ ë°˜ì‚Ź/방출된 ꎑ량을 êŽ€ìžĄí•  수 ìžˆë„ëĄ êł ì•ˆë˜ì—ˆë‹€. íŹí† ë‹€ìŽì˜€ë“œëĄœë¶€í„° 읞식된 디지턞 수ìč˜ ê°’ì€ ìƒì—…ì ìœŒëĄœ 판맀되는 ìŽˆêł í•Žìƒë„ ë¶„êŽ‘êł„(QE Pro, Ocean Insight)와 뚜렷한 선형 êŽ€êł„ë„Œ ëłŽìŽëŠ” êČƒì„ 확읞하였닀 (R2 > 0.99). ì¶”ê°€ì ìœŒëĄœ, 4S-SIF에서 êŽ€ìžĄëœ SIF와 ìŽˆêł í•Žìƒë„ ë¶„êŽ‘êł„ë„Œ ìŽìš©í•˜ì—Ź 추출한 SIF가 선형적읞 êŽ€êł„ë„Œ ìŽëŁšëŠ” êČƒì„ 확읞하였닀. 식생의 ìƒëŠŹí•™ì  ëł€í™”ë„Œ 음윌킀는 화학 ëŹŒì§ˆìž DCMU(3-(3, 4-dichlorophenyl)-1, 1-dimethyurea)을 ìČ˜ëŠŹí–ˆìŒì—ë„ ë¶ˆê”Źí•˜êł , 산출된 SIF듀은 선형 êŽ€êł„ë„Œ ëłŽì˜€ë‹€. ëłž 섌서는 êž°ìĄŽ 시슀템듀에 ëč„í•Ž ì‚Źìš©í•˜êž° ì‰œêł  간닚하며, 저렎하Ʞ ë•ŒëŹžì— 닀양한 ì‹œêł”ê°„ì  슀쌀음의 SIFë„Œ êŽ€ìžĄí•  수 있닀는 임점읎 있닀. 위성 Ʞ반의 SIFë„Œ ìŽìš©í•˜ì—Ź 쎝음찚생산성(gross primary productivity, GPP)을 추정하는 ì—°ê”ŹëŠ” 씜귌 탄소 순환 ì—°ê”Ź 분알에서 ê°êŽ‘ë°›êł  있는 ì—°ê”Ź ìŁŒì œìŽë‹€. ê·žëŸŹë‚˜, SIF와 GPP의 êŽ€êł„ëŠ” ì—Źì „ížˆ 많은 불확싀성을 ì§€ë‹ˆêł  있는데, 읎는 SIF-GPP êŽ€êł„ë„Œ ìĄ°ì ˆí•˜ëŠ” 식생의 ê”ŹìĄ°ì  및 ìƒëŠŹí•™ì  요읞을 따로 ë¶„ëŠŹí•˜ì—Ź êł ì°°í•œ ì—°ê”Źë“€ìŽ ë¶€ìĄ±í•˜êž° ë•ŒëŹžìŽë‹€. ëłž 학위 ë…ŒëŹžì˜ Chapter 3에서는 ì§€ì†ì ìœŒëĄœ SIF, GPP, íĄìˆ˜ëœ êŽ‘í•©ì„±ìœ íššëł”ì‚ŹëŸ‰ (absorbed photosynthetically active radiation, APAR), ê·žëŠŹêł  íŽëĄœëĄœí•„êłŒ ìčŽëĄœí‹°ë…žìŽë“œì˜ ëč„윚 읞자 (chlorophyll: carotenoid index, CCI)ë„Œ 옚대ìčšì—œìˆ˜ëŠŒì—ì„œ ì—°ì†ì ìœŒëĄœ êŽ€ìžĄí•˜ì˜€ë‹€. SIF-GPP êŽ€êł„ì˜ ê”ŹìČŽì ìž 메컀니슘 êŽ€êł„ë„Œ 밝히Ʞ ìœ„í•˜ì—Ź, ꎑ 읎용횚윚 (light use efficiency, LUE_p), ì—œëĄì†Œ 형ꎑ 수득넠 (chlorophyll fluorescence yield, Ί_F) ê·žëŠŹêł  SIF ꎑ자가 ê”°ëœìœŒëĄœë¶€í„° 방출되는 ëč„윚 (escape fraction, f_esc)을 각각 ë„ì¶œí•˜êł  íƒê”Źí•˜ì˜€ë‹€. SIF와 GPP의 êŽ€êł„ëŠ” 뚜렷한 ëč„ ì„ í˜•ì ìž êŽ€êł„ë„Œ ëłŽìŽëŠ” êČƒì„ 확읞했윌며(R2 = 0.91 with a hyperbolic regression function, daily), ìŒìŁŒêž° 닚위에서 SIF는 APAR에 대핮 선형적읎었지만 GPP는 APAR에 대핮 뚜렷한 포화 êŽ€êł„ë„Œ ëłŽìŽëŠ” êČƒì„ 확읞하였닀. ì¶”ê°€ì ìœŒëĄœ LUE_p 와 Ί_F 가 대Ʞ 옚도에 따띌 반응하는 정도가 닀넞 êČƒì„ 확읞하였닀. LUE_p는 높은 옚도에서 포화 되었지만, Ί_F는 포화 팚턎을 확읞할 수 없었닀. 또한, ꔰ띜 수쀀에서의 CCI와 Ί_F가 뚜렷한 상ꎀ êŽ€êł„ë„Œ ëłŽì˜€ë‹€(R2 = 0.84). 읎는 Ί_F가 ì—œëĄì†Œ 색소에 영햄을 LUE_p에 ëč„í•Ž 더 강한 êŽ€êł„ê°€ 있을 수 있음을 ì‹œì‚Źí•œë‹€. ë§ˆì§€ë§‰ìœŒëĄœ, f_esc가 태양ꎑ의 산란된 정도에 따띌 반응을 í•˜ì—Ź, Ί_F와 LUE_p의 강한 상ꎀ êŽ€êł„ë„Œ 형성하는데 êž°ì—Źí•˜ëŠ” êČƒì„ 확읞하였닀. ìŽëŸŹí•œ 발êČŹì€ 옚대 ìčšì—œìˆ˜ëŠŒì—ì„œ ꔰ띜 수쀀의 SIF-GPPêŽ€êł„ë„Œ ìƒëŠŹí•™ì  및 ê”ŹìĄ°ì  ìžĄë©Žì—ì„œ ìŽí•Ží•˜êł  규ëȘ…하는데 큰 도움읎 될 êČƒìŽë‹€. ì‹ëŹŒ êł„ì ˆì€ 식생읎 ìČ ì„ 따띌 ìŁŒêž°ì ìœŒëĄœ 나타낮는 ëł€í™”ë„Œ êŽ€ìžĄí•˜ëŠ” 반응읎닀. ì‹ëŹŒ êł„ì ˆì€ ìœĄìƒìƒíƒœêł„ì™€ 대Ʞ권 ì‚ŹìŽì˜ ëŹŒì§ˆ 순환을 읎핎하는데 맀우 쀑요하닀. 위성 Ʞ반의 NDVI는 ì‹ëŹŒ êł„ì ˆì„ íƒì§€í•˜êł  ì—°ê”Źí•˜ëŠ”ë° 가임 ëŒ€ì€‘ì ìœŒëĄœ ì‚Źìš©ëœë‹€. ê·žëŸŹë‚˜, 활엜수늌에서의 위성 NDVI Ʞ반의 개엜 시Ʞ 및 성숙 시Ʞ가 싀제 얎느 시점을 탐지하는지는 불분ëȘ…하닀. 싀제 활엜수늌은 닀잔 식생 ê”ŹìĄ°ì˜ ì‚Œì°šì›ìœŒëĄœ ìŽëŁšì–Žì ž 있는 반멎, 위성 영상은 닀잔 식생의 신혞가 ì„žì—Ź 있는 읎찚원의 êČ°êłŒëŹŒìŽêž° ë•ŒëŹžìŽë‹€. 따띌서, 위성 NDVI Ʞ반의 ì‹ëŹŒ êł„ì ˆìŽ 닀잔 식생 ê”ŹìĄ°ë„Œ ìŽëŁšêł  있는 활엜수늌에서 싀제 현임 êŽ€ìžĄêłŒ ëč„ꔐ하였을 때 얎느 시점을 탐지하는지에 대한 궁ꞈ슝읎 낚는닀. ëłž 학위 ë…ŒëŹžì˜ Chapter 4에서는 ì§€ì†ì ìœŒëĄœ 8년 동안 활엜수늌낎의 닀잔 식생의 ì‹ëŹŒ êł„ì ˆì„ 귌접 표멎 원êČ© 섌싱 시슀템을 ìŽìš©í•˜ì—Ź êŽ€ìžĄí•˜êł , 위성 NDVI Ʞ반의 ì‹ëŹŒ êł„ì ˆêłŒ ëč„ꔐ하였닀. 닀채널 ë¶„êŽ‘êł„ë„Œ 상부 식생의 위와 아래에 ì„€ìč˜í•šìœŒëĄœìš, 상부 ì‹ìƒêłŒ 하부 식생의 ì‹ëŹŒ êł„ì ˆì„ 각각 ì—°ì†ì ìœŒëĄœ êŽ€ìžĄí•˜ì˜€ë‹€. ì‹ëŹŒ êł„ì ˆì„ 탐지하Ʞ ìœ„í•˜ì—Ź 가임 많읎 ì‚Źìš©ë˜ëŠ” ë°©ëČ•ìž 1) 역ìč˜ë„Œ 읎용하는 ë°©ëČ•êłŒ 2) ìŽêł„ë„í•šìˆ˜ë„Œ 읎용하는 ë°©ëČ•ì„ ì‚Źìš©í•˜ì—Ź 개엜 시Ʞ 및 성숙 시Ʞ넌 êł„ì‚°í•˜êł  읎넌 닀잔 식생의 ì‹ëŹŒ êł„ì ˆêłŒ ëč„ꔐ하였닀. ëłž ì—°ê”Ź êČ°êłŒ, ìČ«ëČˆì§žëĄœ, ꔰ띜의 상잔부에서 ì‹€ìžĄí•œ NDVI와 위성 Ʞ반의 NDVI가 강한 선형 êŽ€êł„ë„Œ ëłŽìŽëŠ” êČƒì„ 확읞했닀 (R2=0.95 는 MODIS 영상듀 및 R2= 0.85 는 Landsat8). 두ëČˆì§žëĄœ, ìŽêł„ë„í•šìˆ˜ ë°©ëČ•êłŒ 10%의 역ìč˜ ê°’ì„ 읎용한 ë°©ëČ•ìŽ ëč„슷한 개엜 시Ʞ넌 추정하는 êČƒì„ 확읞하였윌며, 하부 식생의 개엜 시Ʞ와 ëč„슷한 시Ʞ임을 확읞하였닀. ì„žëČˆì§žëĄœ, ìŽêł„ë„í•šìˆ˜ ë°©ëČ•êłŒ 90%의 역ìč˜ ê°’ì„ 읎용한 ë°©ëČ•ìŽ ëč„슷한 성숙 시Ʞ넌 산출하였윌며, 읎는 상부 식생의 성숙 시Ʞ와 ëč„슷하였닀. ì¶”ê°€ì ìœŒëĄœ 상부 식생의 개엜 시Ʞ와 하부 식생의 개엜 시Ʞ가 옚도와 반응하는 정도가 뚜렷하êȌ 찚읎가 나는 êČƒì„ 확읞할 수 있었닀. 상부 식생의 개엜 시Ʞ는 적산 생임 옚도 음수 (AGDD)와 강한 상ꎀ성을 ëłŽì˜€êł , 하부 식생의 개엜 시Ʞ는 AGDD와 연ꎀ성을 ê°–êł  있을 뿐만 아니띌 추위 음수(NCD)에도 ëŻŒê°í•˜êȌ 반응하는 êČƒì„ 확읞하였닀. ìŽëŸŹí•œ êČ°êłŒëŠ” 위성 NDVI Ʞ반의 개엜 시Ʞ는 하부 식생의 개엜 시Ʞ와 연ꎀ성읎 ë†’êł , 성숙 시Ʞ는 상부 식생의 성숙 시Ʞ와 ëč„슷하닀는 êČƒì„ ì˜ëŻží•œë‹€. 또한, 상부 ì‹ìƒêłŒ 하부 식생읎 옚도에 닀넞 ëŻŒê°ì„±ì„ ê°–êł  있얎, 위성에서 산출된 ì‹ëŹŒ êł„ì ˆì„ ìŽìš©í•˜ì—Ź êž°í›„ëł€í™”ë„Œ ìŽí•Ží•˜êł ìž 할 때, ì–Žë–€ 잔의 식생읎 위성 영상에 ìŁŒëœ 영햄을 믞ìč˜ëŠ”지 êł ë €í•Žì•Œ 한닀는 êČƒì„ ì‹œì‚Źí•œë‹€. 위성은 넓은 지역의 ëł€í™”ë„Œ 손쉜êȌ ëȘšë‹ˆí„°ë§í•  수 있얎 많은 가늄성을 ê°–êł  있는 ë„ê”ŹìŽì§€ë§Œ, 볎닀 정확한 위성 êŽ€ìžĄ 값을 읎핎하Ʞ 위핎서는 현임에서 êŽ€ìžĄëœ ìžëŁŒë„Œ êž°ë°˜ìœŒëĄœ 한 êČ€ìŠìŽ ìš”ê”Źëœë‹€. ëłž 학위 ë…ŒëŹžì—ì„œëŠ” 1) 귌접 표멎 섌싱 시슀템을 개발, 2) 귌접 표멎 섌싱 시슀템을 활용한 식생의 ìƒëŠŹí•™ì  ê”ŹìĄ°ì  ëł€í™”ì˜ 지속적읞 êŽ€ìžĄ, 3) 닀잔 식생 ê”ŹìĄ°ì—ì„œ êŽ€ìžĄë˜ëŠ” ì‹ëŹŒ êł„ì ˆ 및 위성에서 추정된 ì‹ëŹŒ êł„ì ˆì˜ 연ꎀ성 평가넌 수행하였닀. 개발한 귌접 표멎 섌서는 상업 ì„Œì„œë“€êłŒ ëč„ꔐ했을 때, 가êČ©ì ìœŒëĄœ ì €ë Ží•˜êł  손 쉜êȌ ì‚Źìš©í•  수 있었윌며, ì„±ëŠ„ì ìœŒëĄœë„ ë¶€ìĄ±í•šìŽ 없었닀. 귌접 표멎 섌싱 시슀템을 ìŽìš©í•˜ì—Ź SIFë„Œ 옚대 ìčšì—œìˆ˜ëŠŒì—ì„œ ì§€ì†ì ìœŒëĄœ êŽ€ìžĄí•œ êČ°êłŒ, ìŽìŒì°šìƒì‚°ì„±êłŒ SIF는 ëč„선형 êŽ€êł„ë„Œ 갖는 êČƒì„ 확읞하였닀. 읎는 많은 선행 ì—°ê”Źë“€ì—ì„œ 발표한 위성 Ʞ반의 SIF와 GPP가 선형적읞 êŽ€êł„ë„Œ ëłŽìžë‹€ëŠ” êČƒêłŒëŠ” 닀소 상반된 êČ°êłŒìŽë‹€. ë‹€ìžĄ 식생의 뮄ìČ  ì‹ëŹŒ êł„ì ˆì„ ì—°ì†ì ìœŒëĄœ êŽ€ìžĄí•˜êł , 위성 Ʞ반의 ì‹ëŹŒ êł„ì ˆêłŒ ëč„ꔐ평가한 ì—°ê”Źì—ì„œëŠ” 위성 Ʞ반의 개엜 시Ʞ는 하부 식생에 영햄을 ìŁŒëĄœ ë°›êł , 성숙 시Ʞ는 상부 식생의 시Ʞ와 ëč„슷한 êČƒì„ 확읞하였닀. 슉, 귌접 표멎 섌싱 시슀템을 ìŽìš©í•˜ì—Ź 현임에서 ì‹€ìžĄí•œ êČ°êłŒëŠ” 위성 영상을 활용한 ì—°ê”Źë“€êłŒëŠ” 닀넞 êČ°êłŒë„Œ ëłŽìŒ 수도 있윌며, 위성 영상을 평가 및 읎핎하는데 ì‚Źìš©ë  수 있닀. 따띌서, 볎닀 정확한 식생의 ê”ŹìĄ°ì , ìƒëŠŹí•™ì  메컀니슘을 읎핎하Ʞ 위핎서는 귌접 표멎 섌싱을 활용한 현임에서 ê”Źì¶•í•œ ìžëŁŒ Ʞ반의 더 많은 ì—°ê”Źë“€ìŽ 필요하닀는 êČƒì„ ì‹œì‚Źí•œë‹€.Abstract i Chapter 1. Introduction 2 1. Background 2 2. Purpose 5 Chapter 2. Monitoring SIF using a filter-based near surface remote sensing system 9 1. Introduction 9 2. Instrument desing and technical spefications of the filter-based smart surface sensing system (4S-SIF) 12 2.1. Ultra-narrow band pass filter 14 2.2. Calibration of 4S-SIF 15 2.3. Temperature and humidity response 16 2.4. Evaluate SIF quality from 4S-SIF in the field 17 3. Results 20 4. Discussion 23 Chapter 3. SIF is non-linearly related to canopy photosynthesis in a temperate evergreen needleleaf forest during fall transition 27 1. Introduction 27 2. Methods and Materials 31 2.1. Study site 31 2.2. Leaf-level fluorescence measurement 32 2.3. Canopy-level SIF and spectral reflectance measurement 34 2.4. SIF retrieval 37 2.5. Canopy-level photosynthesis estimates 38 2.6. Meteorological variables and APAR 39 2.7. Statistical analysis 40 3. Results 41 4. Discussion 48 4.1. Non-linear relationships between SIF and GPP 49 4.2. Role of f_esc in SIF-GPP relationship 53 4.3. Implications of non-linear SIF-GPP relationship in temperate ENF 54 5. Conclusion 57 6. Appendix 59 Chapter 4. Monitoring spring phenology of multi-layer canopy in a deciduous broadleaf forest: What signal do satellites actually see in space 65 1. Introduction 65 2. Materials and Methods 69 2.1. Study site 69 2.2. Multi-layer spectral reflectance and transmittance measurement 70 2.3. Phenometrics detection 72 2.4. In-situ multi-layer phenology 74 2.5. Satellite remote sensing data 75 2.6. Meteorological variables 75 3. Results 76 3.1. Seasonal to interannual variations of NDVI, 1-transmittance, and air temperature 76 3.2. Inter-annual variation of leaf-out and full-leaf dates 78 3.3. The relationships between dates calculated according tothreshold and in-situ multi-layer phenology 80 3.4. The relationship between multi-layer phenology, AGDD and NCD 81 4. Discussion 82 4.1. How do satellite-based leaf-out and full-leaf dates differ from in-situ multi-layer phenology 83 4.2. Are the 10 % and 90 % thresholds from satellite-basedNDVI always well matched with the leaf-out and full-leaf dates calculated by the curvature change rate 86 4.3. What are the implications of the difference between satellite-based and multi-layer phenology 87 4.4. Limitations and implications for future studies 89 5. Conclusion 91 6. Appendix 92 Chapter 5. Conclusion 114 Abstract in Korean 115박

    Environmental factors influencing the Douglas fir invasion of Nothofagus forest

    Get PDF
    Douglas fir (Pseudotsuga menziesii) was introduced to New Zealand in 1859 for timber, and in the last few decades has been recognised as an invasive species, particularly into grassland. However, its potential to invade native forests is still poorly understood. I investigated the invasion of Douglas fir into mountain beech (Nothofagus solandri var. cliffortioides) forest, particularly the factors limiting the spread, at Cora Lynn, near Arthur’s Pass. Adjacent to the beech forest is an 80 ha Douglas fir and Corsican pine (Pinus nigra) plantation, whose invasive potential started to raise concerns in the late 1980s. The study was divided into three parts. The first consisted of resampling plots established on the site in 1989 to count Douglas fir seedlings spreading into Nothofagus. In the second part, I investigated the factors limiting the establishment of Douglas fir seedlings in the beech forest. To do this I established 400 points in the native forest, and at each point I assessed the light environment (via hemispherical photography), measured altitude, and distance to the nearest seedling. Lastly, I conducted a root competition and fertiliser-addition experiment to investigate the factors limiting the growth of the Douglas fir seedlings. I selected 544 naturally regenerating seedlings (30 to 70 cm tall) in the beech forest, and applied one of four treatments: fertiliser addition, root trenching, fertiliser addition plus root trenching, and control. Light environment and altitude at each seedling were measured. The mean density of seedlings in the plots has increased 13-fold since the first measurement in 1989, from 11,267 seedlings/ha to 150,333 seedlings/ha in 2016. There is a widespread Douglas fir invasion of the mountain beech forest in progress – in only a single point out of 400 did I fail to find a seedling within a 10-m radius. Altitude had the strongest effect on the distance to the nearest seedling, with lower seedling density at higher altitudes. Although distance to the nearest seedling decreased with light, the seedlings were not restricted to light-wells or canopy gaps as generally presumed, but present throughout the native forest. Light had the strongest effect on seedling growth. At the experimental seedlings, light ranged from 3.01 to 10.29 mol m-2 d-1, that is 8.12% and 27.8% respectively of full sunlight. Altitude had a negative effect on seedling growth. Nutrient availability was second to light as a growth limiting factor. Fertiliser addition had the largest effect on seedling growth across treatments, increasing it 18.3% above that of the control. Root trenching had a small negative effect on growth, while fertilizer plus trenching had a positive effect, but still smaller than expected. I have demonstrated that Douglas fir is well able to invade Nothofagus forest, albeit slowly, and that the spread was affected by a complex relationship between light, nutrients, root competition, distance to the seed source, and altitude. In New Zealand, poor control of conifer invasions into grasslands and shrublands in the past has led to large environmental and economic impacts. The potential negative effects of the Douglas fir spread into native forest could be minimized by early control. I hope that my work will contribute to a better understanding of the Douglas fir’s invasive potential, as well as draw attention to the need for managing the spread in progress

    Trooppisten alkuperÀismetsien monitorointi Taita Hillsin alueella digitaalisen ilmakuva-aineiston avulla

    Get PDF
    The loss and degradation of forest cover is currently a globally recognised problem. The fragmentation of forests is further affecting the biodiversity and well-being of the ecosystems also in Kenya. This study focuses on two indigenous tropical montane forests in the Taita Hills in southeastern Kenya. The study is a part of the TAITA-project within the Department of Geography in the University of Helsinki. The study forests, Ngangao and Chawia, are studied by remote sensing and GIS methods. The main data includes black and white aerial photography from 1955 and true colour digital camera data from 2004. This data is used to produce aerial mosaics from the study areas. The land cover of these study areas is studied by visual interpretation, pixel-based supervised classification and object-oriented supervised classification. The change of the forest cover is studied with GIS methods using the visual interpretations from 1955 and 2004. Furthermore, the present state of the study forests is assessed with leaf area index and canopy closure parameters retrieved from hemispherical photographs as well as with additional, previously collected forest health monitoring data. The canopy parameters are also compared with textural parameters from digital aerial mosaics. This study concludes that the classification of forest areas by using true colour data is not an easy task although the digital aerial mosaics are proved to be very accurate. The best classifications are still achieved with visual interpretation methods as the accuracies of the pixel-based and object-oriented supervised classification methods are not satisfying. According to the change detection of the land cover in the study areas, the area of indigenous woodland in both forests has decreased in 1955-2004. However in Ngangao, the overall woodland area has grown mainly because of plantations of exotic species. In general, the land cover of both study areas is more fragmented in 2004 than in 1955. Although the forest area has decreased, forests seem to have a more optimistic future than before. This is due to the increasing appreciation of the forest areas.Metsien vÀheneminen ja niiden laadun heikkeneminen on maailmanlaajuisesti tunnustettu ongelma. Metsien pirstoutuminen vaikuttaa biodiversiteettiin ja ekosysteemien hyvinvointiin myös Keniassa. TÀmÀ tutkimus keskittyy kahden trooppisen alkuperÀisvuoristometsÀn tutkimiseen Taita Hillsin alueella Kaakkois-Keniassa. Tutkimus on osa Helsingin yliopiston maantieteen laitoksen TAITA-projektia. TutkimusmetsiÀ, Ngangaoa ja Chawiaa tutkitaan kaukokartoitus- ja paikkatietomenetelmien avulla. Tutkimuksen pÀÀaineiston muodostavat mustavalkoiset ilmakuvat vuodelta 1955 ja digitaaliset oikeavÀri-ilmakuvat vuodelta 2004. NÀistÀ ilmakuvista muodostetaan ilmakuvamosaiikit tutkimusalueilta. Alueiden maanpeite luokitellaan kolmella metodilla: visuaalisella tulkinnalla, pikselipohjaisella ohjatulla luokituksella sekÀ objekti-orientoidulla ohjatulla luokituksella. MetsÀpinta-alan muutosta vuosina 1955-2004 tutkitaan visuaalisten luokitusten perusteella kÀyttÀmÀllÀ paikkatietomenetelmiÀ. Tutkimusmetsien kuntoa arvioidaan lehtipinta-alaindeksin ja latvuksen sulkeituneisuuden avulla. NÀmÀ parametrit saadaan kÀyttÀmÀllÀ hemisfÀÀrisiÀ valokuvia. LisÀksi tutkimuksessa kÀytetÀÀn metsien kuntoa arvioivaa aiemmin kerÀttyÀ tutkimustietoa. Latvusparametreja verrataan digitaali-ilmakuvamosaiikeilta saatuihin tekstuurisiin parametreihin. Yhteenvetona voidaan sanoa, ettÀ metsÀalueiden luokitus oikeavÀri-ilmakuvia kÀyttÀmÀllÀ ei ole helppoa, vaikka itse digitaali-ilmakuvista tehdyt mosaiikit olisivat erittÀin tarkkoja. Parhaat luokitustulokset saavutetaan edelleen visuaalisella tulkinnalla, sillÀ pikselipohjainen ja objekti-orientoitu ohjattu luokitus eivÀt saavuta tarpeeksi hyvÀÀ luotettavuutta. Tutkimusalueiden maanpeitteen muutostulkinnan mukaan alkuperÀismetsÀn osuus on vÀhentynyt sekÀ Ngangaossa ettÀ Chawiassa 1955-2004. Ngangaossa metsÀn kokonaisala on kuitenkin lisÀÀntynyt lÀhinnÀ eksoottisten puulajien istutusten vuoksi. Molempien tutkimusalueiden maanpeite on huomattavasti pirstoutuneempaa vuonna 2004 kuin vuonna 1955. Vaikka metsÀala on pienentynyt, tutkimusmetsien tulevaisuus nÀyttÀÀ paremmalta kuin aiemmin. TÀmÀ johtuu lÀhinnÀ kasvavasta metsien arvostuksesta

    Influence of sky conditions on carbon dioxide uptake by forests

    Get PDF
    Sky conditions play an important role in the Earth’s climate system, altering the solar radiation reaching the Earth’s surface and determining the fraction of incoming direct and diffuse radiation. Sky conditions dictate the radiation distribution inside plant canopies and also the carbon dioxide uptake by forests during the growing season. On the long term these diffuse conditions may have a positive influence on forest growth in Northern Britain during the last 50 years. We compared the quantity (amount) and quality (spectral distribution) of direct and diffuse radiation above, inside and below a forest stand under sunny, cloudy and overcast conditions in a thinned Sitka spruce [Picea sitchensis (Bong.) Carr.] forest (28 years, with an leaf area index (LAI) of around 5 m2m-2). Similar radiation properties (sky conditions) were used for analysis of light response and canopy conductance measurements in the same and also in a different spruce forest of the same species (33 years, LAI of around 7 m2 m-2) over the growing season 2008 in order to compare canopy activity under these conditions. In order to integrate short-term and longterm studies, we were looking at how far these conditions are influencing forest growth over several decades. To do so, we used freshly cut tree discs of Sitka spruce from a felled forest (planting year 1953) in southern Scotland and solar direct and diffuse radiation along with other meteorological data from the nearest meteorological station. Our analysis show that the amount and quality of solar radiation is distributed differently inside forest stands under various sky conditions, leading to an enhanced carbon dioxide uptake and canopy stomatal activity under diffuse cloudy and overcast conditions. Furthermore we demonstrated which factors have influenced diffuse radiation distribution over the past 50 years and how these are correlated with forest growth in southern Scotland

    Evolutionary Dynamics of Rapid, Microgeographic Adaptation in an Amphibian Metapopulation

    Get PDF
    Wild organisms can rapidly adapt to changing environments, even at fine spatial scales. This fact prompts hope that contemporary local adaptation may buffer some of the negative anthropogenic impacts to ecosystems. However, there are limits to the pace of adaptation. Understanding the adaptive potential—and limitations—of individual species at fine-resolution is an important task if we hope to accurately predict the repercussions of future climate and landscape change on biodiversity. My dissertation takes advantage of an uncommonly long-observed and closely-studied system to paint a comprehensive picture of evolution over time in association with shifts in ecological contexts. In this dissertation, I show evidence of rapid, microgeographic evolution in response to climate within a metapopulation of wood frogs (Rana sylvatica). Critically, I show that populations separated by tens to hundreds of meters—well within the dispersal ability of the species—exhibited considerable shifts in development rates over a period of two decades, or roughly 6-9 generations. Using historical climate data and new methods of assessing landscape change, I show that these changes were mainly a response to warming climates. The ecological contexts experienced by the metapopulation are associated with the evolution of physiological rates. Specifically, I show that climate change seems to have caused a counter-intuitive delay in spring breeding phenology while drought and warming later in the larval development period correspond with a shift toward earlier metamorphosis. The picture that emerges is of a contracting developmental window, which is expected to select for faster intrinsic development rates. Superimposed on the metapopulation-wide shift to faster development was a pattern of counter-gradient variation reflecting a similar pattern seen two decades prior. Furthermore, I empirically demonstrate a trade-off between faster development and a swimming performance trait that strongly contributes to fitness. This trade-off helps to explain why intrinsic development rates vary spatially with pond temperatures, but in the opposite direction of the relationship with temperature over time. Though the evidence for rapid adaptation to climate change presented in this dissertation reveals that evolution can buffer populations from extinction, it also entreats caution. There is a clear trend of demographic decline among wood frog populations that experienced greater magnitudes of environmental change. In fact, the three populations that suffered local extinctions over the 20-year course of observations inhabited ponds characterized by the greatest change in temperature or canopy

    Assessing uncertainties of in situ FAPAR measurements across different forest ecosystems

    Get PDF
    Carbon balances are important for understanding global climate change. Assessing such balances on a local scale depends on accurate measurements of material flows to calculate the productivity of the ecosystem. The productivity of the Earth's biosphere, in turn, depends on the ability of plants to absorb sunlight and assimilate biomass. Over the past decades, numerous Earth observation missions from satellites have created new opportunities to derive so-called “essential climate variables” (ECVs), including important variables of the terrestrial biosphere, that can be used to assess the productivity of our Earth's system. One of these ECVs is the “fraction of absorbed photosynthetically active radiation” (FAPAR) which is needed to calculate the global carbon balance. FAPAR relates the available photosynthetically active radiation (PAR) in the wavelength range between 400 and 700 nm to the absorption of plants and thus quantifies the status and temporal development of vegetation. In order to ensure accurate datasets of global FAPAR, the UN/WMO institution “Global Climate Observing System” (GCOS) declared an accuracy target of 10% (or 0.05) as acceptable for FAPAR products. Since current satellite derived FAPAR products still fail to meet this accuracy target, especially in forest ecosystems, in situ FAPAR measurements are needed to validate FAPAR products and improve them in the future. However, it is known that in situ FAPAR measurements can be affected by significant systematic as well as statistical errors (i.e., “bias”) depending on the choice of measurement method and prevailing environmental conditions. So far, uncertainties of in situ FAPAR have been reproduced theoretically in simulations with radiation transfer models (RTMs), but the findings have been validated neither in field experiments nor in different forest ecosystems. However, an uncertainty assessment of FAPAR in field experiments is essential to develop practicable measurement protocols. This work investigates the accuracy of in situ FAPAR measurements and sources of uncertainties based on multi-year, 10-minute PAR measurements with wireless sensor networks (WSNs) at three sites on three continents to represent different forest ecosystems: a mixed spruce forest at the site “Graswang” in Southern Germany, a boreal deciduous forest at the site “Peace River” in Northern Alberta, Canada and a tropical dry forest (TDF) at the site “Santa Rosa”, Costa Rica. The main statements of the research results achieved in this thesis are briefly summarized below: Uncertainties of instantaneous FAPAR in forest ecosystems can be assessed with Wireless Sensor Networks and additional meteorological and phenological observations. In this thesis, two methods for a FAPAR bias assessment have been developed. First, for assessing the bias of the so-called two-flux FAPAR estimate, the difference between FAPAR acquired under diffuse light conditions and two-flux FAPAR acquired during clear-sky conditions can be investigated. Therefore, measurements of incoming and transmitted PAR are required to calculate the two-flux FAPAR estimate as well as observations of the ratio of diffuse-to-total incident radiation. Second, to assess the bias of not only the two- but also the three-flux FAPAR estimate, four-flux FAPAR observations must be carried out, i.e. measurements of top-of-canopy (TOC) PAR albedo and PAR albedo of the forest background. Then, to quantify the bias of the two and three-flux estimate, the difference with the four-flux estimate can be calculated. Main sources of uncertainty of in situ FAPAR measurements are high solar zenith angle, occurrence of colored leaves and increased wind speed. At all sites, FAPAR observations exhibited considerable seasonal variability due to the phenological development of the forests (Graswang: 0.89 to 0.99 ±0.02; Peace River: 0.55 to 0.87 ±0.03; Santa Rosa: 0.45 to 0.97 ±0.06). Under certain environmental conditions, FAPAR was affected by systemic errors, i.e. bias that go beyond phenologically explainable fluctuations. The in situ observations confirmed a significant overestimation of FAPAR by up to 0.06 at solar zenith angles above 60° and by up to 0.05 under the occurrence of colored leaves of deciduous trees. The results confirm theoretical findings from radiation transfer simulations, which could now for the first time be quantified under field conditions. As a new finding, the influence of wind speed could be shown, which was particularly evident at the boreal location with a significant bias of FAPAR values at wind speeds above 5 ms-1. The uncertainties of the two-flux FAPAR estimate are acceptable under typical summer conditions. Three-flux or four-flux FAPAR measurements do not necessarily increase the accuracy of the estimate. The highest average relative bias of different FAPAR estimates were 2.1% in Graswang, 8.4% in Peace River and -4.5% in Santa Rosa. Thus, the GCOS accuracy threshold of 10% set by the GCOS was generally not exceeded. The two-flux FAPAR estimate was only found to be biased during high wind speeds, as changes in the TOC PAR albedo are not considered in two-flux FAPAR measurements. Under typical summer conditions, i.e. low wind speed, small solar zenith angle and green leaves, two-flux FAPAR measurements can be recommended for the validation of satellite-based FAPAR products. Based on the results obtained, it must be emphasized that the three-flux FAPAR estimate, which has often been preferred in previous studies, is not necessarily more accurate, which was particularly evident in the tropical location. The discrepancies between ground measurements and the current Sentinel-2 FAPAR product still largely exceed the GCOS target accuracy at the respective study sites, even when considering uncertainties of FAPAR ground measurements. It was found that the Sentinel-2 (S2) FAPAR product systematically underestimated the ground observations at all three study sites (i.e. negative values for the mean relative bias in percent). The highest agreement was observed at the boreal site Peace River with a mean relative deviation of -13% (RÂČ=0.67). At Graswang and Santa Rosa, the mean relative deviations were -20% (RÂČ=0.68) and -25% (RÂČ=0.26), respectively. It was argued that these high discrepancies resulted from both the generic nature of the algorithm and the higher ecosystem complexity of the sites Graswang and Santa Rosa. It was also found that the temporal aggregation method of FAPAR ground data should be well considered for comparison with the S2 FAPAR product, which refers to daily averages, as overestimation of FAPAR during high solar zenith angles could distort validation results. However, considering uncertainties of ground measurements, the S2 FAPAR product met the GCOS accuracy requirements only at the boreal study site. Overall, it has been shown that the S2 FAPAR product is already well suited to assess the temporal variability of FAPAR, but due to the low accuracy of the absolute values, the possibilities to feed global production efficiency models and evaluate global carbon balances are currently limited. The accuracy of satellite derived FAPAR depends on the complexity of the observed forest ecosystem. The highest agreement between satellite derived FAPAR product and ground measurements, both in terms of absolute values and spatial variability, was achieved at the boreal site, where the complexity of the ecosystem is lowest considering forest structure variables and species richness. These results have been elaborated and presented in three publications that are at the center of this cumulative thesis. In sum, this work closes a knowledge gap by displaying the interplay of different environmental conditions on the accuracy of situ FAPAR measurements. Since the uncertainties of FAPAR are now quantifiable under field conditions, they should also be considered in future validation studies. In this context, the practical recommendations for the implementation of ground observations given in this thesis can be used to prepare sampling protocols, which are urgently needed to validate and improve global satellite derived FAPAR observations in the future.Projektionen zukĂŒnftiger Kohlenstoffbilanzen sind wichtig fĂŒr das VerstĂ€ndnis des globalen Klimawandels und sind auf genaue Messungen von StoffflĂŒssen zur Berechnung der ProduktivitĂ€t des Erdökosystems angewiesen. Die ProduktivitĂ€t der BiosphĂ€re unserer Erde wiederum ist abhĂ€ngig von der Eigenschaft von Pflanzen, Sonnenlicht zu absorbieren und Biomasse zu assimilieren. Über die letzten Jahrzehnte haben zahlreiche Erdbeobachtungsmissionen von Satelliten neue Möglichkeiten geschaffen, sogenannte „essentielle Klimavariablen“ (ECVs), darunter auch wichtige Variablen der terrestrischen BiosphĂ€re, aus Satellitendaten abzuleiten, mit deren Hilfe man die ProduktivitĂ€t unseres Erdsystems computergestĂŒtzt berechnen kann. Eine dieser „essenziellen Klimavariablen“ ist der Anteil der absorbierten photosynthetisch aktiven Strahlung (FAPAR) die man zur Berechnung der globalen Kohlenstoffbilanz benötigt. FAPAR bezieht die verfĂŒgbare photosynthetisch aktive Strahlung (PAR) im WellenlĂ€ngenbereich zwischen 400 und 700 nm auf die Absorption von Pflanzen und quantifiziert somit Status und die zeitliche Entwicklung von Vegetation. Um möglichst prĂ€zise Informationen aus dem globalen FAPAR zu gewĂ€hrleisten, erklĂ€rte die UN/WMO-Institution zur globalen Klimabeobachtung, das “Global Climate Observing System“ (GCOS), ein Genauigkeitsziel von 10% (bzw. 0.05) FAPAR-Produkte als akzeptabel. Da aktuell satellitengestĂŒtzte FAPAR-Produkte dieses Genauigkeitsziel besonders in Waldökosystemen immer noch verfehlen, werden dringen in situ FAPAR-Messungen benötigt, um die FAPAR-Produkte validieren und in Zukunft verbessern zu können. Man weiß jedoch, dass je nach Auswahl des Messsystems und vorherrschenden Umweltbedingungen in situ FAPAR-Messungen mit erheblichen sowohl systematischen als auch statistischen Fehlern beeinflusst sein können. Bisher wurden diese Fehler in Simulationen mit Strahlungstransfermodellen zwar theoretisch nachvollzogen, aber die dadurch abgeleiteten Befunde sind bisher weder in Feldversuchen noch in unterschiedlichen Waldökosystemen validiert worden. Eine UnsicherheitsabschĂ€tzung von FAPAR im Feldversuch ist allerdings essenziell, um praxistaugliche Messprotokolle entwickeln zu können. Die vorliegende Arbeit untersucht die Genauigkeit von in situ FAPAR-Messungen und Ursachen von Unsicherheit basierend auf mehrjĂ€hrigen, 10-minĂŒtigen PAR-Messungen mit drahtlosen Sensornetzwerken (WSNs) an drei verschiedenen Waldstandorten auf drei Kontinenten: der Standort „Graswang“ in SĂŒddeutschland mit einem Fichten-Mischwald, der Standort „Peace River“ in Nord-Alberta, Kanada mit einem borealen Laubwald und der Standort „Santa Rosa“, Costa Rica mit einem tropischen Trockenwald. Die Hauptaussagen der in dieser Arbeit erzielten Forschungsergebnisse werden im Folgenden kurz zusammengefasst: Unsicherheiten von FAPAR in Waldökosystemen können mit drahtlosen Sensornetzwerken und zusĂ€tzlichen meteorologischen und phĂ€nologischen Beobachtungen quantifiziert werden. In dieser Arbeit wurden zwei Methoden fĂŒr die Bewertung von Unsicherheiten entwickelt. Erstens, um den systematischen Fehler der sogenannten „two-flux“ FAPAR-Messung zu beurteilen, kann die Differenz zwischen FAPAR, das unter diffusen LichtverhĂ€ltnissen aufgenommen wurde, und FAPAR, das unter klaren Himmelsbedingungen aufgenommen wurde, untersucht werden. FĂŒr diese Methode sind Messungen des einfallenden und transmittierten PAR sowie Beobachtungen des VerhĂ€ltnisses von diffuser zur gesamten einfallenden Strahlung erforderlich. Zweitens, um den systematischen Fehler nicht nur der „two-flux“ FAPAR-Messung, sondern auch der „three-flux“ FAPAR-Messung zu beurteilen, mĂŒssen „four-flux“ FAPAR-Messungen durchgefĂŒhrt werden, d.h. zusĂ€tzlich Messungen der PAR Albedo des BlĂ€tterdachs sowie des Waldbodens. Zur Quantifizierung des Fehlers der „two-flux“ und „three-flux“ FAPAR-Messung kann die Differenz zur „four-flux“ FAPAR-Messung herangezogen werden. Die Hauptquellen fĂŒr die Unsicherheit von in situ FAPAR-Messungen sind ein hoher Sonnenzenitwinkel, BlattfĂ€rbung und erhöhte Windgeschwindigkeit. An allen drei Untersuchungsstandorten zeigten die FAPAR-Beobachtungen natĂŒrliche saisonale Schwankungen aufgrund der phĂ€nologischen Entwicklung der WĂ€lder (Graswang: 0,89 bis 0,99 ±0,02; Peace River: 0,55 bis 0,87 ±0,03; Santa Rosa: 0,45 bis 0,97 ±0,06). Unter bestimmten Umweltbedingungen war FAPAR von systematischen Fehlern, d.h. Verzerrungen betroffen, die ĂŒber phĂ€nologisch erklĂ€rbare Schwankungen hinausgehen. So bestĂ€tigten die in situ Beobachtungen eine signifikante ÜberschĂ€tzung von FAPAR um bis zu 0,06 bei Sonnenzenitwinkeln von ĂŒber 60° und um bis zu 0,05 bei Vorkommen gefĂ€rbter BlĂ€tter der LaubbĂ€ume. Die Ergebnisse bestĂ€tigen theoretische Erkenntnisse aus Strahlungstransfersimulationen, die nun erstmalig unter Feldbedingungen quantifiziert werden konnten. Als eine neue Erkenntnis konnte der Einfluss der Windgeschwindigkeit gezeigt werden, der sich besonders am borealen Standort mit einer signifikanten Verzerrung der FAPAR-Werte bei Windgeschwindigkeiten ĂŒber 5 ms-1 Ă€ußerte. Die Unsicherheiten der „two-flux“ FAPAR-Messung sind unter typischen Sommerbedingungen akzeptabel. „Three-flux“ oder „four-flux“ FAPAR-Messungen erhöhen nicht unbedingt die Genauigkeit der AbschĂ€tzung. Die höchsten durchschnittlichen relativen systematischen Fehler verschiedener Methoden zur FAPAR-Messung betrugen 2,1% in Graswang, 8,4% in Peace River und -4,5% in Santa Rosa. Damit wurde der durch GCOS festgelegte Genauigkeitsschwellenwert von 10% im Allgemeinen nicht ĂŒberschritten. Die „two-flux“ FAPAR-Messung wurde nur als fehleranfĂ€llig bei hohe Windgeschwindigkeiten befunden, da Änderungen der PAR-Albedo des BlĂ€tterdachs bei der „two-flux“ FAPAR-Messung nicht berĂŒcksichtigt werden. Unter typischen Sommerbedingungen, also geringe Windgeschwindigkeit, kleiner Sonnenzenitwinkel und grĂŒne BlĂ€tter, kann die „two-flux“ FAPAR-Messung fĂŒr die Validierung von satellitengestĂŒtzten FAPAR-Produkten empfohlen werden. Auf Basis der gewonnenen Ergebnisse muss betont werden, dass die „three-flux“ FAPAR-Messung, die in bisherigen Studien hĂ€ufig bevorzugt wurde, nicht unbedingt weniger fehlerbehaftet sind, was sich insbesondere am tropischen Standort zeigte. Die Abweichungen zwischen Bodenmessungen und dem aktuellen Sentinel-2 FAPAR-Produkt ĂŒberschreiten auch unter BerĂŒcksichtigung von Unsicherheiten in der Messmethodik immer noch weitgehend die GCOS-Zielgenauigkeit an den jeweiligen Untersuchungsstandorten. So zeigte sich, dass das S2 FAPAR-Produkt die Bodenbeobachtungen an allen drei Studienstandorten systematisch unterschĂ€tzte (d.h. negative Werte fĂŒr die mittlere relative Abweichung in Prozent). Die höchste Übereinstimmung wurde am borealen Standort Peace River mit einer mittleren relativen Abweichung von -13% (RÂČ=0,67) beobachtet. An den Standorten Graswang und Santa Rosa betrugen die mittleren relativen Abweichungen jeweils -20% (RÂČ=0,68) bzw. -25% (RÂČ=0,26). Es wurde argumentiert, dass diese hohen Abweichungen auf eine Kombination sowohl des generisch ausgerichteten Algorithmus als auch der höheren KomplexitĂ€t beider Ökosysteme zurĂŒckgefĂŒhrt werden können. Es zeigte sich außerdem, dass die zeitlichen Aggregierung der FAPAR-Bodendaten zum Vergleich mit S2 FAPAR-Produkt, das sich auf Tagesmittelwerte bezieht, gut ĂŒberlegt sein sollte, da die ÜberschĂ€tzung von FAPAR wĂ€hrend eines hohen Sonnenzenitwinkels in den Bodendaten die Validierungsergebnisse verzerren kann. Unter BerĂŒcksichtigung der Unsicherheiten der Bodendaten erfĂŒllte das S2 FAPAR Produkt jedoch nur am boreale Untersuchungsstandort die Genauigkeitsanforderungen des GCOS. Insgesamt hat sich gezeigt, dass das S2 FAPAR-Produkt bereits gut zur Beurteilung der zeitlichen VariabilitĂ€t von FAPAR geeignet ist, aber aufgrund der geringen Genauigkeit der absoluten Werte sind die Möglichkeiten, globale Produktionseffizienzmodelle zu speisen und globale Kohlenstoffbilanzen zu bewerten, derzeit begrenzt. Die Genauigkeit von satellitengestĂŒtzten FAPAR-Produkten ist abhĂ€ngig von der KomplexitĂ€t des beobachteten Waldökosystems. Die höchste Übereinstimmung zwischen satellitengestĂŒtztem FAPAR und Bodenmessungen, sowohl hinsichtlich der Darstellung von absolutem Werten als auch der rĂ€umlichen VariabilitĂ€t, wurde am borealen Standort erzielt, fĂŒr den die KomplexitĂ€t des Ökosystems unter BerĂŒcksichtigung von Waldstrukturvariablen und Artenreichtum am geringsten ausfĂ€llt. Die dargestellten Ergebnisse wurden in drei Publikationen dieser kumulativen Arbeit erarbeitet. Insgesamt schließt diese Arbeit eine WissenslĂŒcke in der Darstellung des Zusammenspiels verschiedener Umgebungsbedingungen auf die Genauigkeit von situ FAPAR-Messungen. Da die Unsicherheiten von FAPAR nun unter Feldbedingungen quantifizierbar sind, sollten sie in zukĂŒnftigen Validierungsstudien auch berĂŒcksichtigt werden. In diesem Zusammenhang können die in dieser Arbeit genannten praktische Empfehlungen fĂŒr die DurchfĂŒhrung von Bodenbeobachtungen zur Erstellung von Messprotokollen herangezogen werden, die dringend erforderlich sind, um globale satellitengestĂŒtzte FAPAR-Beobachten validieren und zukĂŒnftig verbessern zu können
    • 

    corecore