36,095 research outputs found

    Robustness of large-scale stochastic matrices to localized perturbations

    Get PDF
    Upper bounds are derived on the total variation distance between the invariant distributions of two stochastic matrices differing on a subset W of rows. Such bounds depend on three parameters: the mixing time and the minimal expected hitting time on W for the Markov chain associated to one of the matrices; and the escape time from W for the Markov chain associated to the other matrix. These results, obtained through coupling techniques, prove particularly useful in scenarios where W is a small subset of the state space, even if the difference between the two matrices is not small in any norm. Several applications to large-scale network problems are discussed, including robustness of Google's PageRank algorithm, distributed averaging and consensus algorithms, and interacting particle systems.Comment: 12 pages, 4 figure

    Marginal integration for nonparametric causal inference

    Full text link
    We consider the problem of inferring the total causal effect of a single variable intervention on a (response) variable of interest. We propose a certain marginal integration regression technique for a very general class of potentially nonlinear structural equation models (SEMs) with known structure, or at least known superset of adjustment variables: we call the procedure S-mint regression. We easily derive that it achieves the convergence rate as for nonparametric regression: for example, single variable intervention effects can be estimated with convergence rate n−2/5n^{-2/5} assuming smoothness with twice differentiable functions. Our result can also be seen as a major robustness property with respect to model misspecification which goes much beyond the notion of double robustness. Furthermore, when the structure of the SEM is not known, we can estimate (the equivalence class of) the directed acyclic graph corresponding to the SEM, and then proceed by using S-mint based on these estimates. We empirically compare the S-mint regression method with more classical approaches and argue that the former is indeed more robust, more reliable and substantially simpler.Comment: 40 pages, 14 figure

    Assessing the significance of knockout cascades in metabolic networks

    Full text link
    Complex networks have been shown to be robust against random structural perturbations, but vulnerable against targeted attacks. Robustness analysis usually simulates the removal of individual or sets of nodes, followed by the assessment of the inflicted damage. For complex metabolic networks, it has been suggested that evolutionary pressure may favor robustness against reaction removal. However, the removal of a reaction and its impact on the network may as well be interpreted as selective regulation of pathway activities, suggesting a tradeoff between the efficiency of regulation and vulnerability. Here, we employ a cascading failure algorithm to simulate the removal of single and pairs of reactions from the metabolic networks of two organisms, and estimate the significance of the results using two different null models: degree preserving and mass-balanced randomization. Our analysis suggests that evolutionary pressure promotes larger cascades of non-viable reactions, and thus favors the ability of efficient metabolic regulation at the expense of robustness

    Updating and downdating techniques for optimizing network communicability

    Get PDF
    The total communicability of a network (or graph) is defined as the sum of the entries in the exponential of the adjacency matrix of the network, possibly normalized by the number of nodes. This quantity offers a good measure of how easily information spreads across the network, and can be useful in the design of networks having certain desirable properties. The total communicability can be computed quickly even for large networks using techniques based on the Lanczos algorithm. In this work we introduce some heuristics that can be used to add, delete, or rewire a limited number of edges in a given sparse network so that the modified network has a large total communicability. To this end, we introduce new edge centrality measures which can be used to guide in the selection of edges to be added or removed. Moreover, we show experimentally that the total communicability provides an effective and easily computable measure of how "well-connected" a sparse network is.Comment: 20 pages, 9 pages Supplementary Materia
    • 

    corecore