5,807 research outputs found

    Securing NextG networks with physical-layer key generation: A survey

    Get PDF
    As the development of next-generation (NextG) communication networks continues, tremendous devices are accessing the network and the amount of information is exploding. However, with the increase of sensitive data that requires confidentiality to be transmitted and stored in the network, wireless network security risks are further amplified. Physical-layer key generation (PKG) has received extensive attention in security research due to its solid information-theoretic security proof, ease of implementation, and low cost. Nevertheless, the applications of PKG in the NextG networks are still in the preliminary exploration stage. Therefore, we survey existing research and discuss (1) the performance advantages of PKG compared to cryptography schemes, (2) the principles and processes of PKG, as well as research progresses in previous network environments, and (3) new application scenarios and development potential for PKG in NextG communication networks, particularly analyzing the effect and prospects of PKG in massive multiple-input multiple-output (MIMO), reconfigurable intelligent surfaces (RISs), artificial intelligence (AI) enabled networks, integrated space-air-ground network, and quantum communication. Moreover, we summarize open issues and provide new insights into the development trends of PKG in NextG networks

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Sensing User's Activity, Channel, and Location with Near-Field Extra-Large-Scale MIMO

    Full text link
    This paper proposes a grant-free massive access scheme based on the millimeter wave (mmWave) extra-large-scale multiple-input multiple-output (XL-MIMO) to support massive Internet-of-Things (IoT) devices with low latency, high data rate, and high localization accuracy in the upcoming sixth-generation (6G) networks. The XL-MIMO consists of multiple antenna subarrays that are widely spaced over the service area to ensure line-of-sight (LoS) transmissions. First, we establish the XL-MIMO-based massive access model considering the near-field spatial non-stationary (SNS) property. Then, by exploiting the block sparsity of subarrays and the SNS property, we propose a structured block orthogonal matching pursuit algorithm for efficient active user detection (AUD) and channel estimation (CE). Furthermore, different sensing matrices are applied in different pilot subcarriers for exploiting the diversity gains. Additionally, a multi-subarray collaborative localization algorithm is designed for localization. In particular, the angle of arrival (AoA) and time difference of arrival (TDoA) of the LoS links between active users and related subarrays are extracted from the estimated XL-MIMO channels, and then the coordinates of active users are acquired by jointly utilizing the AoAs and TDoAs. Simulation results show that the proposed algorithms outperform existing algorithms in terms of AUD and CE performance and can achieve centimeter-level localization accuracy.Comment: Submitted to IEEE Transactions on Communications, Major revision. Codes will be open to all on https://gaozhen16.github.io/ soo

    A survey on reconfigurable intelligent surfaces: wireless communication perspective

    Get PDF
    Using reconfigurable intelligent surfaces (RISs) to improve the coverage and the data rate of future wireless networks is a viable option. These surfaces are constituted of a significant number of passive and nearly passive components that interact with incident signals in a smart way, such as by reflecting them, to increase the wireless system's performance as a result of which the notion of a smart radio environment comes to fruition. In this survey, a study review of RIS-assisted wireless communication is supplied starting with the principles of RIS which include the hardware architecture, the control mechanisms, and the discussions of previously held views about the channel model and pathloss; then the performance analysis considering different performance parameters, analytical approaches and metrics are presented to describe the RIS-assisted wireless network performance improvements. Despite its enormous promise, RIS confronts new hurdles in integrating into wireless networks efficiently due to its passive nature. Consequently, the channel estimation for, both full and nearly passive RIS and the RIS deployments are compared under various wireless communication models and for single and multi-users. Lastly, the challenges and potential future study areas for the RIS aided wireless communication systems are proposed

    Accurate Battery Modelling for Control Design and Economic Analysis of Lithium-ion Battery Energy Storage Systems in Smart Grid

    Get PDF
    Adoption of lithium-ion battery energy storage systems (Li-ion BESSs) as a flexible energy source (FES) has been rapid, particularly for active network management (ANM) schemes to facilitate better utilisation of inverter based renewable energy sources (RES) in power systems. However, Li-ion BESSs display highly nonlinear performance characteristics, which are based on parameters such as state of charge (SOC), temperature, depth of discharge (DOD), charge/discharge rate (C-rate), and battery-aging conditions. Therefore, it is important to include the dynamic nature of battery characteristics in the process of the design and development of battery system controllers for grid applications and for techno-economic studies analyzing the BESS economic profitability. This thesis focuses on improving the design and development of Li-ion BESS controllers for ANM applications by utilizing accurate battery performance models based on the second-order equivalent-circuit dynamic battery modelling technique, which considers the SOC, C-rate, temperature, and aging as its performance affecting parameters. The proposed ANM scheme has been designed to control and manage the power system parameters within the limits defined by grid codes by managing the transients introduced due to the intermittence of RESs and increasing the RES penetration at the same time. The validation of the ANM scheme and the effectiveness of controllers that manage the flexibilities in the power system, which are a part of the energy management system (EMS) of ANM, has been validated with the help of simulation studies based on an existing real-life smart grid pilot in Finland, Sundom Smart Grid (SSG). The studies were performed with offline (short-term transient-stability analysis) and real-time (long-term transient analysis) simulations. In long-term simulation studies, the effect of battery aging has also been considered as part of the Li-ion BESS controller design; thus, its impact on the overall power system operation can be analyzed. For this purpose, aging models that can determine the evolving peak power characteristics associated with aging have been established. Such aging models are included in the control loop of the Li-ion BESS controller design, which can help analyse battery aging impacts on the power system control and stability. These analyses have been validated using various use cases. Finally, the impact of battery aging on economic profitability has been studied by including battery-aging models in techno-economic studies.Aurinkosähköjärjestelmien ja tuulivoiman laajamittainen integrointi sähkövoimajärjestelmän eri jännitetasoille on lisääntynyt nopeasti. Uusiutuva energia on kuitenkin luonteeltaan vaihtelevaa, joka voi aiheuttaa nopeita muutoksia taajuudessa ja jännitteessä. Näiden vaihteluiden hallintaan tarvitaan erilaisia joustavia energiaresursseja, kuten energiavarastoja, sekä niiden tehokkaan hyödyntämisen mahdollistaviea älykkäitä ja aktiivisia hallinta- ja ohjausjärjestelmiä. Litiumioniakkuihin pohjautuvien invertteriliitäntäisten energian varastointijärjestelmien käyttö joustoresursseina aktiiviseen verkonhallintaan niiden pätö- ja loistehon ohjauksen avulla on lisääntynyt nopeasti johtuen niiden kustannusten laskusta, modulaarisuudesta ja teknisistä ominaisuuksista. Litiumioniakuilla on erittäin epälineaariset ominaisuudet joita kuvaavat parametrit ovat esimerkiksi lataustila, lämpötila, purkaussyvyys, lataus/ purkausnopeus ja akun ikääntyminen. Akkujen ominaisuuksien dynaaminen luonne onkin tärkeää huomioida myös akkujen sähköverkkoratkaisuihin liittyvien säätöjärjestelmien kehittämisessä sekä teknis-taloudellisissa kannattavuusanalyyseissa. Tämä väitöstutkimus keskittyy ensisijaisesti aktiiviseen verkonhallintaan käytettävien litiumioniakkujen säätöratkaisuiden parantamiseen hyödyntämällä tarkkoja, dynaamisia akun suorituskykymalleja, jotka perustuvat toisen asteen ekvivalenttipiirien akkumallinnustekniikkaan, jossa otetaan huomioon lataustila, lataus/purkausnopeus ja lämpötila. Työssä kehitetyn aktiivisen verkonhallintajärjestelmän avulla tehtävät akun pätö- ja loistehon ohjausperiaatteet on validoitu laajamittaisten simulointien avulla, esimerkiksi paikallista älyverkkopilottia Sundom Smart Gridiä simuloimalla. Simuloinnit tehtiin sekä lyhyen aikavälin offline-simulaatio-ohjelmistoilla että pitkän aikavälin simulaatioilla hyödyntäen reaaliaikasimulointilaitteistoa. Pitkän aikavälin simulaatioissa akun ikääntymisen vaikutus otettiin huomioon litiumioniakun ohjauksen suunnittelussa jotta sen vaikutusta sähköjärjestelmän kokonaistoimintaan voitiin analysoida. Tätä tarkoitusta varten luotiin akun ikääntymismalleja, joilla on mahdollista määrittää akun huipputehon muutos sen ikääntyessä. Akun huipputehon muutos taas vaikuttaa sen hyödynnettävyyteen erilaisten pätötehon ohjaukseen perustuvien joustopalveluiden tarjoamiseen liittyen. Lisäksi väitöstutkimuksessa tarkasteltiin akkujen ikääntymisen vaikutusta niiden taloudelliseen kannattavuuteen sisällyttämällä akkujen ikääntymismalleja teknis-taloudellisiin tarkasteluihin.fi=vertaisarvioitu|en=peerReviewed

    Current issues of the management of socio-economic systems in terms of globalization challenges

    Get PDF
    The authors of the scientific monograph have come to the conclusion that the management of socio-economic systems in the terms of global challenges requires the use of mechanisms to ensure security, optimise the use of resource potential, increase competitiveness, and provide state support to economic entities. Basic research focuses on assessment of economic entities in the terms of global challenges, analysis of the financial system, migration flows, logistics and product exports, territorial development. The research results have been implemented in the different decision-making models in the context of global challenges, strategic planning, financial and food security, education management, information technology and innovation. The results of the study can be used in the developing of directions, programmes and strategies for sustainable development of economic entities and regions, increasing the competitiveness of products and services, decision-making at the level of ministries and agencies that regulate the processes of managing socio-economic systems. The results can also be used by students and young scientists in the educational process and conducting scientific research on the management of socio-economic systems in the terms of global challenges

    Towards addressing training data scarcity challenge in emerging radio access networks: a survey and framework

    Get PDF
    The future of cellular networks is contingent on artificial intelligence (AI) based automation, particularly for radio access network (RAN) operation, optimization, and troubleshooting. To achieve such zero-touch automation, a myriad of AI-based solutions are being proposed in literature to leverage AI for modeling and optimizing network behavior to achieve the zero-touch automation goal. However, to work reliably, AI based automation, requires a deluge of training data. Consequently, the success of the proposed AI solutions is limited by a fundamental challenge faced by cellular network research community: scarcity of the training data. In this paper, we present an extensive review of classic and emerging techniques to address this challenge. We first identify the common data types in RAN and their known use-cases. We then present a taxonomized survey of techniques used in literature to address training data scarcity for various data types. This is followed by a framework to address the training data scarcity. The proposed framework builds on available information and combination of techniques including interpolation, domain-knowledge based, generative adversarial neural networks, transfer learning, autoencoders, fewshot learning, simulators and testbeds. Potential new techniques to enrich scarce data in cellular networks are also proposed, such as by matrix completion theory, and domain knowledge-based techniques leveraging different types of network geometries and network parameters. In addition, an overview of state-of-the art simulators and testbeds is also presented to make readers aware of current and emerging platforms to access real data in order to overcome the data scarcity challenge. The extensive survey of training data scarcity addressing techniques combined with proposed framework to select a suitable technique for given type of data, can assist researchers and network operators in choosing the appropriate methods to overcome the data scarcity challenge in leveraging AI to radio access network automation
    corecore