34,398 research outputs found

    Maximum-likelihood estimation for diffusion processes via closed-form density expansions

    Full text link
    This paper proposes a widely applicable method of approximate maximum-likelihood estimation for multivariate diffusion process from discretely sampled data. A closed-form asymptotic expansion for transition density is proposed and accompanied by an algorithm containing only basic and explicit calculations for delivering any arbitrary order of the expansion. The likelihood function is thus approximated explicitly and employed in statistical estimation. The performance of our method is demonstrated by Monte Carlo simulations from implementing several examples, which represent a wide range of commonly used diffusion models. The convergence related to the expansion and the estimation method are theoretically justified using the theory of Watanabe [Ann. Probab. 15 (1987) 1-39] and Yoshida [J. Japan Statist. Soc. 22 (1992) 139-159] on analysis of the generalized random variables under some standard sufficient conditions.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1118 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A variational approach to path estimation and parameter inference of hidden diffusion processes

    Full text link
    We consider a hidden Markov model, where the signal process, given by a diffusion, is only indirectly observed through some noisy measurements. The article develops a variational method for approximating the hidden states of the signal process given the full set of observations. This, in particular, leads to systematic approximations of the smoothing densities of the signal process. The paper then demonstrates how an efficient inference scheme, based on this variational approach to the approximation of the hidden states, can be designed to estimate the unknown parameters of stochastic differential equations. Two examples at the end illustrate the efficacy and the accuracy of the presented method.Comment: 37 pages, 2 figures, revise

    Fitting Effective Diffusion Models to Data Associated with a "Glassy Potential": Estimation, Classical Inference Procedures and Some Heuristics

    Full text link
    A variety of researchers have successfully obtained the parameters of low dimensional diffusion models using the data that comes out of atomistic simulations. This naturally raises a variety of questions about efficient estimation, goodness-of-fit tests, and confidence interval estimation. The first part of this article uses maximum likelihood estimation to obtain the parameters of a diffusion model from a scalar time series. I address numerical issues associated with attempting to realize asymptotic statistics results with moderate sample sizes in the presence of exact and approximated transition densities. Approximate transition densities are used because the analytic solution of a transition density associated with a parametric diffusion model is often unknown.I am primarily interested in how well the deterministic transition density expansions of Ait-Sahalia capture the curvature of the transition density in (idealized) situations that occur when one carries out simulations in the presence of a "glassy" interaction potential. Accurate approximation of the curvature of the transition density is desirable because it can be used to quantify the goodness-of-fit of the model and to calculate asymptotic confidence intervals of the estimated parameters. The second part of this paper contributes a heuristic estimation technique for approximating a nonlinear diffusion model. A "global" nonlinear model is obtained by taking a batch of time series and applying simple local models to portions of the data. I demonstrate the technique on a diffusion model with a known transition density and on data generated by the Stochastic Simulation Algorithm.Comment: 30 pages 10 figures Submitted to SIAM MMS (typos removed and slightly shortened

    Comment: The 2005 Neyman Lecture: Dynamic Indeterminism in Science

    Full text link
    Comment on ``The 2005 Neyman Lecture: Dynamic Indeterminism in Science'' [arXiv:0808.0620]Comment: Published in at http://dx.doi.org/10.1214/07-STS246B the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Maximum Likelihood Estimation for Single Particle, Passive Microrheology Data with Drift

    Get PDF
    Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the creep compliance [Xu et al (1998)] or transformed to determine dynamic storage and loss moduli [Mason & Weitz (1995)]. A prevalent hurdle arises when there is a non-diffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a P\'eclet number, the MSD statistics are distorted, and thus the path data must be "corrected" for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of P\'eclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model because it affords tunable, sub-diffusive MSD statistics consistent with typical 30 second long, experimental observations of microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.Comment: 29 pages, 12 figure
    corecore