70 research outputs found

    An Analysis of HMM-based Prediction of Articulatory Movements

    Get PDF

    A review of data collection practices using electromagnetic articulography

    Get PDF
    This paper reviews data collection practices in electromagnetic articulography (EMA) studies, with a focus on sensor placement. It consists of three parts: in the first part, we introduce electromagnetic articulography as a method. In the second part, we focus on existing data collection practices. Our overview is based on a literature review of 905 publications from a large variety of journals and conferences, identified through a systematic keyword search in Google Scholar. The review shows that experimental designs vary greatly, which in turn may limit researchers' ability to compare results across studies. In the third part of this paper we describe an EMA data collection procedure which includes an articulatory-driven strategy for determining where to position sensors on the tongue without causing discomfort to the participant. We also evaluate three approaches for preparing (NDI Wave) EMA sensors reported in the literature with respect to the duration the sensors remain attached to the tongue: 1) attaching out-of-the-box sensors, 2) attaching sensors coated in latex, and 3) attaching sensors coated in latex with an additional latex flap. Results indicate no clear general effect of sensor preparation type on adhesion duration. A subsequent exploratory analysis reveals that sensors with the additional flap tend to adhere for shorter times than the other two types, but that this pattern is inverted for the most posterior tongue sensor

    Linear dynamic models for automatic speech recognition

    Get PDF
    The majority of automatic speech recognition (ASR) systems rely on hidden Markov models (HMM), in which the output distribution associated with each state is modelled by a mixture of diagonal covariance Gaussians. Dynamic information is typically included by appending time-derivatives to feature vectors. This approach, whilst successful, makes the false assumption of framewise independence of the augmented feature vectors and ignores the spatial correlations in the parametrised speech signal. This dissertation seeks to address these shortcomings by exploring acoustic modelling for ASR with an application of a form of state-space model, the linear dynamic model (LDM). Rather than modelling individual frames of data, LDMs characterize entire segments of speech. An auto-regressive state evolution through a continuous space gives a Markovian model of the underlying dynamics, and spatial correlations between feature dimensions are absorbed into the structure of the observation process. LDMs have been applied to speech recognition before, however a smoothed Gauss-Markov form was used which ignored the potential for subspace modelling. The continuous dynamical state means that information is passed along the length of each segment. Furthermore, if the state is allowed to be continuous across segment boundaries, long range dependencies are built into the system and the assumption of independence of successive segments is loosened. The state provides an explicit model of temporal correlation which sets this approach apart from frame-based and some segment-based models where the ordering of the data is unimportant. The benefits of such a model are examined both within and between segments. LDMs are well suited to modelling smoothly varying, continuous, yet noisy trajectories such as found in measured articulatory data. Using speaker-dependent data from the MOCHA corpus, the performance of systems which model acoustic, articulatory, and combined acoustic-articulatory features are compared. As well as measured articulatory parameters, experiments use the output of neural networks trained to perform an articulatory inversion mapping. The speaker-independent TIMIT corpus provides the basis for larger scale acoustic-only experiments. Classification tasks provide an ideal means to compare modelling choices without the confounding influence of recognition search errors, and are used to explore issues such as choice of state dimension, front-end acoustic parametrization and parameter initialization. Recognition for segment models is typically more computationally expensive than for frame-based models. Unlike frame-level models, it is not always possible to share likelihood calculations for observation sequences which occur within hypothesized segments that have different start and end times. Furthermore, the Viterbi criterion is not necessarily applicable at the frame level. This work introduces a novel approach to decoding for segment models in the form of a stack decoder with A* search. Such a scheme allows flexibility in the choice of acoustic and language models since the Viterbi criterion is not integral to the search, and hypothesis generation is independent of the particular language model. Furthermore, the time-asynchronous ordering of the search means that only likely paths are extended, and so a minimum number of models are evaluated. The decoder is used to give full recognition results for feature-sets derived from the MOCHA and TIMIT corpora. Conventional train/test divisions and choice of language model are used so that results can be directly compared to those in other studies. The decoder is also used to implement Viterbi training, in which model parameters are alternately updated and then used to re-align the training data

    An analysis-by-synthesis approach to vocal tract modeling for robust speech recognition

    Full text link
    In this thesis we present a novel approach to speech recognition that incorporates knowledge of the speech production process. The major contribution is the development of a speech recognition system that is motivated by the physical generative process of speech, rather than the purely statistical approach that has been the basis for virtually all current recognizers. We follow an analysis-by-synthesis approach. We begin by attributing a physical meaning to the inner states of the recognition system pertaining to the configurations the human vocal tract takes over time. We utilize a geometric model of the vocal tract, adapt it to our speakers, and derive realistic vocal tract shapes from electromagnetic articulograph (EMA) measurements in the MOCHA database. We then synthesize speech from the vocal tract configurations using a physiologically-motivated articulatory synthesis model of speech generation. Finally, the observation probability of the Hidden Markov Model (HMM) used for phone classification is a function of the distortion between the speech synthesized from the vocal tract configurations and the real speech. The output of each state in the HMM is based on a mixture of density functions

    Application of the PE method to up-slope sound propagation

    Get PDF

    Quantitative analysis with electron energy-loss: spectroscopic imaging and its application in pathology

    Get PDF
    After the invention of the transmission electron microscope (TEM) in 1931 by Ruska and Knoll, it took about 20 years to develop the inslmment into a tool for ultrastructural research. In material science this led to the ability to visualize and investigate atomic arrangements through the imaging of columns of atoms in a lattice or by electron diffraction. In biology the instrument enabled the visualization of cell structures at an unsurpassed level of detail. New cell structures, cells and organisms were depicted and more knowledge was gained about the complex ultrastructural morphology of the cell. Novel preparation procedures for fixation, cytochemical staining and labelling, embedding and the llse of ultramicrotomy and cryo-techniques increased the investigative capabilities of the TEM in the direction of cell functioning. In physics, right from the beginning, it was recognized that the interaction of electrons irradiating a specimen can be used not only for visualization but also gives the opportunity to investigate the chemical nature of the irradiated matter. This opened the way to the analytical use of the TEM and many instruments were subsequently equipped with highly specialized detectors for each of the analytical possibilities. In this way true microanalytical laboratories were created. Two main types of TEMs have been developed: the scanning transmission electron microscope (STEM) and the conventional transmission electron microscope (CTEM)
    • ā€¦
    corecore