1,535 research outputs found

    INFERRING SOCIAL NETWORKS FROM PASSIVELY COLLECTED WI-FI METADATA

    Get PDF
    The emergence of smartphones and other highly portable Wi-Fi enabled devices offers unprecedented amounts of information leaked through Wi-Fi metadata. The constantly connected nature of Wi-Fi devices together with the intimate relationship between users and their device presents an opportunity for using a user’s device to gain information about the user themselves. Through passive data collection, without interference or the possibility of being detected, it is possible to harvest large datasets. This work looks at the possibility of inferring underlying social networks through the analysis of these metadata traces. Using spatiotemporal proximity as an indicator of friendship, findings demonstrate the ability to accurately predict underlying social structures in various simulated settings

    Socially-aware congestion control in ad-hoc networks: Current status and the way forward

    Get PDF
    Ad-hoc social networks (ASNETs) represent a special type of traditional ad-hoc network in whicha user’s social properties (such as the social connections and communications metadata as wellas application data) are leveraged for offering enhanced services in a distributed infrastructurelessenvironments. However, the wireless medium, due to limited bandwidth, can easily suffer from theproblem of congestion when social metadata and application data are exchanged among nodes—a problem that is compounded by the fact that some nodes may act selfishly and not share itsresources. While a number of congestion control schemes have been proposed for the traditional ad-hoc networks, there has been limited focus on incorporating social awareness into congestion controlschemes. We revisit the existing traditional ad-hoc congestion control and data distribution protocolsand motivate the need for embedding social awareness into these protocols to improve performance.We report that although some work is available in opportunistic network that uses socially-awaretechniques to control the congestion issue, this area is largely unexplored and warrants more researchattention. In this regards, we highlight the current research progress and identify multiple futuredirections of research

    Routing, Localization And Positioning Protocols For Wireless Sensor And Actor Networks

    Get PDF
    Wireless sensor and actor networks (WSANs) are distributed systems of sensor nodes and actors that are interconnected over the wireless medium. Sensor nodes collect information about the physical world and transmit the data to actors by using one-hop or multi-hop communications. Actors collect information from the sensor nodes, process the information, take decisions and react to the events. This dissertation presents contributions to the methods of routing, localization and positioning in WSANs for practical applications. We first propose a routing protocol with service differentiation for WSANs with stationary nodes. In this setting, we also adapt a sports ranking algorithm to dynamically prioritize the events in the environment depending on the collected data. We extend this routing protocol for an application, in which sensor nodes float in a river to gather observations and actors are deployed at accessible points on the coastline. We develop a method with locally acting adaptive overlay network formation to organize the network with actor areas and to collect data by using locality-preserving communication. We also present a multi-hop localization approach for enriching the information collected from the river with the estimated locations of mobile sensor nodes without using positioning adapters. As an extension to this application, we model the movements of sensor nodes by a subsurface meandering current mobility model with random surface motion. Then we adapt the introduced routing and network organization methods to model a complete primate monitoring system. A novel spatial cut-off preferential attachment model and iii center of mass concept are developed according to the characteristics of the primate groups. We also present a role determination algorithm for primates, which uses the collection of spatial-temporal relationships. We apply a similar approach to human social networks to tackle the problem of automatic generation and organization of social networks by analyzing and assessing interaction data. The introduced routing and localization protocols in this dissertation are also extended with a novel three dimensional actor positioning strategy inspired by the molecular geometry. Extensive simulations are conducted in OPNET simulation tool for the performance evaluation of the proposed protocol

    INFERRING SOCIAL NETWORKS FROM PASSIVELY COLLECTED WI-FI METADATA

    Get PDF
    The emergence of smartphones and other highly portable Wi-Fi enabled devices offers unprecedented amounts of information leaked through Wi-Fi metadata. The constantly connected nature of Wi-Fi devices together with the intimate relationship between users and their device presents an opportunity for using a user’s device to gain information about the user themselves. Through passive data collection, without interference or the possibility of being detected, it is possible to harvest large datasets. This work looks at the possibility of inferring underlying social networks through the analysis of these metadata traces. Using spatiotemporal proximity as an indicator of friendship, findings demonstrate the ability to accurately predict underlying social structures in various simulated settings

    A system-level methodology for the design and deployment of reliable low-power wireless sensor networks

    Get PDF
    Innovative Internet of Things (IoT) applications with strict performance and energy consumption requirements and where the agile collection of data is paramount are rousing. Wireless sensor networks (WSN) represent a promising solution as they can be easily deployed to sense, process, and forward data. The large number of Sensor Nodes (SNs) composing a WSN are expected to be autonomous, with a node's lifetime dictated by the battery's size. As the form factor of the SN is critical in various use cases such as industrial and building automation, minimizing energy consumption while ensuring availability becomes a priority. Moreover, energy harvesting techniques are increasingly considered as a viable solution for building an entirely green SN and prolonging its lifetime. In the process of building a SN and in the absence of a clear and well-rounded methodology, the designer can easily make unfounded decisions about the right hardware components, their configuration and data reliable data communication techniques such as automatic repeat request (ARQ) and forward error correction (FEC). In this thesis, a methodology to better optimize the design, configuration and deployment of reliable ultra-low power WSNs is proposed. Comprehensive and realistic energy and path-loss (PL) models of the sensor node are also established. Through estimations and measurements, it is shown that following the proposed methodology, the designer can thoroughly explore the design space and make most favorable decisions when choosing commercial off-the-shelf (COTS) components, configuring the node, and deploying a reliable and energy-efficient WSN

    Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems

    Get PDF
    This book explores the critical role of acquisition, application, enhancement, and management of knowledge and human competence in the context of the largely digital and data/information dominated modern world. Whilst humanity owes much of its achievements to the distinct capability to learn from observation, analyse data, gain insights, and perceive beyond original realities, the systematic treatment of knowledge as a core capability and driver of success has largely remained the forte of pedagogy. In an increasingly intertwined global community faced with existential challenges and risks, the significance of knowledge creation, innovation, and systematic understanding and treatment of human competence is likely to be humanity's greatest weapon against adversity. This book was conceived to inform the decision makers and practitioners about the best practice pertinent to many disciplines and sectors. The chapters fall into three broad categories to guide the readers to gain insight from generic fundamentals to discipline-specific case studies and of the latest practice in knowledge and competence management

    How much does a man cost? A dirty, dull, and dangerous application

    Get PDF
    Thesis (M.A.) University of Alaska Fairbanks, 2017This study illuminates the many abilities of Unmanned Aerial Vehicles (UAVs). One area of importance includes the UAV's capability to assist in the development, implementation, and execution of crisis management. This research focuses on UAV uses in pre and post crisis planning and accomplishments. The accompaniment of unmanned vehicles with base teams can make crisis management plans more reliable for the general public and teams faced with tasks such as search and rescue and firefighting. In the fight for mass acceptance of UAV integration, knowledge and attitude inventories were collected and analyzed. Methodology includes mixed method research collected by interviews and questionnaires available to experts and ground teams in the UAV fields, mining industry, firefighting and police force career field, and general city planning crisis management members. This information was compiled to assist professionals in creation of general guidelines and recommendations for how to utilize UAVs in crisis management planning and implementation as well as integration of UAVs into the educational system. The results from this study show the benefits and disadvantages of strategically giving UAVs a role in the construction and implementation of crisis management plans and other areas of interest. The results also show that the general public is lacking information and education on the abilities of UAVs. This education gap shows a correlation with negative attitudes towards UAVs. Educational programs to teach the public benefits of UAV integration should be implemented

    Privacy in characterizing and recruiting patients for IoHT-aided digital clinical trials

    Get PDF
    Nowadays there is a tremendous amount of smart and connected devices that produce data. The so-called IoT is so pervasive that its devices (in particular the ones that we take with us during all the day - wearables, smartphones...) often provide some insights on our lives to third parties. People habitually exchange some of their private data in order to obtain services, discounts and advantages. Sharing personal data is commonly accepted in contexts like social networks but individuals suddenly become more than concerned if a third party is interested in accessing personal health data. The healthcare systems worldwide, however, begun to take advantage of the data produced by eHealth solutions. It is clear that while on one hand the technology proved to be a great ally in the modern medicine and can lead to notable benefits, on the other hand these processes pose serious threats to our privacy. The process of testing, validating and putting on the market a new drug or medical treatment is called clinical trial. These trials are deeply impacted by the technological advancements and greatly benefit from the use of eHealth solutions. The clinical research institutes are the entities in charge of leading the trials and need to access as much health data of the patients as possible. However, at any phase of a clinical trial, the personal information of the participants should be preserved and maintained private as long as possible. During this thesis, we will introduce an architecture that protects the privacy of personal data during the first phases of digital clinical trials (namely the characterization phase and the recruiting phase), allowing potential participants to freely join trials without disclosing their personal health information without a proper reward and/or prior agreement. We will illustrate what is the trusted environment that is the most used approach in eHealth and, later, we will dig into the untrusted environment where the concept of privacy is more challenging to protect while maintaining usability of data. Our architecture maintains the individuals in full control over the flow of their personal health data. Moreover, the architecture allows the clinical research institutes to characterize the population of potentiant users without direct access to their personal data. We validated our architecture with a proof of concept that includes all the involved entities from the low level hardware up to the end application. We designed and realized the hardware capable of sensing, processing and transmitting personal health data in a privacy preserving fashion that requires little to none maintenance

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Privacy-Aware and Reliable Complex Event Processing in the Internet of Things - Trust-Based and Flexible Execution of Event Processing Operators in Dynamic Distributed Environments

    Get PDF
    The Internet of Things (IoT) promises to be an enhanced platform for supporting a heterogeneous range of context-aware applications in the fields of traffic monitoring, healthcare, and home automation, to name a few. The essence of the IoT is in the inter-networking of distributed information sources and the analysis of their data to understand the interactions between the physical objects, their users, and their environment. Complex Event Processing (CEP) is a cogent paradigm to infer higher-level information from atomic event streams (e.g., sensor data in the IoT). Using functional computing modules called operators (e.g., filters, aggregates, sequencers), CEP provides for an efficient and low-latency processing environment. Privacy and mobility support for context processing is gaining immense importance in the age of the IoT. However, new mobile communication paradigms - like Device-to-Device (D2D) communication - that are inherent to the IoT, must be enhanced to support a privacy-aware and reliable execution of CEP operators on mobile devices. It is crucial to preserve the differing privacy constraints of mobile users, while allowing for flexible and collaborative processing. Distributed mobile environments are also susceptible to adversary attacks, given the lack of sufficient control over the processing environment. Lastly, ensuring reliable and accurate CEP becomes a serious challenge due to the resource-constrained and dynamic nature of the IoT. In this thesis, we design and implement a privacy-aware and reliable CEP system that supports distributed processing of context data, by flexibly adapting to the dynamic conditions of a D2D environment. To this end, the main contributions, which form the key components of the proposed system, are three-fold: 1) We develop a method to analyze the communication characteristics of the users and derive the type and strength of their relationships. By doing so, we utilize the behavioral aspects of user relationships to automatically derive differing privacy constraints of the individual users. 2) We employ the derived privacy constraints as trust relations between users to execute CEP operators on mobile devices in a privacy-aware manner. In turn, we develop a trust management model called TrustCEP that incorporates a robust trust recommendation scheme to prevent adversary attacks and allow for trust evolution. 3) Finally, to account for reliability, we propose FlexCEP, a fine-grained flexible approach for CEP operator migration, such that the CEP system adapts to the dynamic nature of the environment. By extracting intermediate operator state and by leveraging device mobility and instantaneous characteristics, FlexCEP provides a flexible CEP execution model under varying network conditions. Overall, with the help of thorough evaluations of the above three contributions, we show how the proposed distributed CEP system can satisfy the requirements established above for a privacy-aware and reliable IoT environment
    • 

    corecore