629 research outputs found

    Group size estimation for hybrid satellite/terrestrial reliable multicast

    Get PDF
    This paper addresses the problem of group size estimation for hybrid satellite/terrestrial multipoint communications. Estimators based on the maximum likelihood principle are investigated. These estimators assume that a Nack suppression mechanism is implemented at transport layer. The performance of these estimators is studied theoretically and via simulations. The integration of an appropriate group size estimator in a transport mechanism is finally considered

    Exploiting the Synergy Between Gossiping and Structured Overlays

    Get PDF
    In this position paper we argue for exploiting the synergy between gossip-based algorithms and structured overlay networks (SON). These two strands of research have both aimed at building fault-tolerant, dynamic, self-managing, and large-scale distributed systems. Despite the common goals, the two areas have, however, been relatively isolated. We focus on three problem domains where there is an untapped potential of using gossiping combined with SONs. We argue for applying gossip-based membership for ring-based SONs---such as Chord and Bamboo---to make them handle partition mergers and loopy networks. We argue that small world SONs---such as Accordion and Mercury---are specifically well-suited for gossip-based membership management. The benefits would be better graph-theoretic properties. Finally, we argue that gossip-based algorithms could use the overlay constructed by SONs. For example, many unreliable broadcast algorithms for SONs could be augmented with anti-entropy protocols. Similarly, gossip-based aggregation could be used in SONs for network size estimation and load-balancing purposes

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    A Mathematical Model for Evaluating the Performance of Multicast Systems

    Get PDF
    © 2008 IEEE. Reprinted, with permission, from Syed S. Rizvi, Aasia Riasat, and Khaled M. Elleith, "A Mathematical Model for Evaluating the Performance of Multicast Systems," The 1st IEEE International Workshop on IP Multimedia Communications (IPMC 2008) August 4 - 7, 2008, St. Thomas U.S. Virgin IslandsThe Internet is experiencing the demand of high-speed real-time applications, such as live streaming multimedia, videoconferencing, and multiparty games. IP multicast is an efficient transmission technique to support these applications. However, there are several architectural issues in this technique that hinder the development and the deployment of IP multicast such as a lack of an efficient multicast address allocation scheme. On the other hand, End System Multicasting (ESM) is a very promising application-layer scheme where all the multicast functionality is shifted to the end-users. Supporting high-speed real-time applications always demand a sound understanding of these schemes and the factors that might affect the end-user requirements. In this paper we attempt to propose both analytical and the mathematical models for characterizing the performance of IP multicast and ESM. Our proposed mathematical model can be used to design and implement a more efficient and robust ESM model for the future networks

    Spatiotemporal Multicast and Partitionable Group Membership Service

    Get PDF
    The recent advent of wireless mobile ad hoc networks and sensor networks creates many opportunities and challenges. This thesis explores some of them. In light of new application requirements in such environments, it proposes a new multicast paradigm called spatiotemporal multicast for supporting ad hoc network applications which require both spatial and temporal coordination. With a focus on a special case of spatiotemporal multicast, called mobicast, this work proposes several novel protocols and analyzes their performances. This dissertation also investigates implications of mobility on the classical group membership problem in distributed computing, proposes a new specification for a partitionable group membership service catering to applications on wireless mobile ad hoc networks, and provides a mobility-aware algorithm and middleware for this service. The results of this work bring new insights into the design and analysis of spatiotemporal communication protocols and fault-tolerant computing in wireless mobile ad hoc networks

    Key distribution technique for IPTV services with support for admission control and user defined groups

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Pretty Private Group Management

    Full text link
    Group management is a fundamental building block of today's Internet applications. Mailing lists, chat systems, collaborative document edition but also online social networks such as Facebook and Twitter use group management systems. In many cases, group security is required in the sense that access to data is restricted to group members only. Some applications also require privacy by keeping group members anonymous and unlinkable. Group management systems routinely rely on a central authority that manages and controls the infrastructure and data of the system. Personal user data related to groups then becomes de facto accessible to the central authority. In this paper, we propose a completely distributed approach for group management based on distributed hash tables. As there is no enrollment to a central authority, the created groups can be leveraged by various applications. Following this paradigm we describe a protocol for such a system. We consider security and privacy issues inherently introduced by removing the central authority and provide a formal validation of security properties of the system using AVISPA. We demonstrate the feasibility of this protocol by implementing a prototype running on top of Vuze's DHT
    corecore