58 research outputs found

    ANALYSIS OF AGRO-ECOSYSTEMS EXPLOITING OPTICAL SATELLITE DATA TIME SERIES: THE CASE STUDY OF CAMARGUE REGION, FRANCE

    Get PDF
    The research activities presented in this manuscript were conducted in the frame of the international project SCENARICE, whose aim is to demonstrate the contribution of different technical and scientific competences, to assess current characteristics of analyzed cropping systems and to define sustainable future agricultural scenarios. Dynamic simulation crop models are used to evaluate the efficiency of current cropping systems and to predict their performances as consequence of climate change scenarios. In this context, a lack of information regarding the intra- and inter-annual variability of crop practices was highlighted for crops such as winter wheat, for the study area of Camargue. Moreover, a description of possible future cropping systems adaptation strategies was needed to formulate short term scenario farming system assessment. To perform this analysis it is fundamental to identify the different farm typologies representing the study area. Since it was required to take into account inter-annual variability of crop practices and farm diversities to build farm typologies, representative data of the study region in both time and space were needed. To address this issue, in this work long term time series of satellite data (2003-2013) were exploited with the specific aims to: (i) provide winter wheat sowing dates estimations variability on a long term period (11 years) to contribute in base line scenario definition and (ii) reconstruct farms land use changes through the analysis of time series of satellite data to provide helpful information for farm typologies definition. Two main research activities were carried out to address the defined objectives. Firstly a rule-based methodology was developed to automatically identify winter wheat cultivated areas in order to retrieve crop sowing occurrences in the satellite time series. Detection criteria were derived on the basis of agronomic expert knowledge and by interpretation of high confidence temporal signature. The distinction of winter wheat from other crops was based on the individuation of the crop heading and establishment periods and considering the length of the crop cycle. The detection of winter wheat cultivated areas showed that 56% of the target in the study area was correctly detected with low commissions (11%). Once winter wheat area was detected, additional rules were designed to identify sowing dates. The method was able to capture the seasonal variability of sowing dates with errors of \ub18 and \ub116 days in 45% and 65% of cases respectively. Extending the analysis to the 11 years period it was observed that in Camargue the most frequent sowing period was about October 31th (\ub14 days of uncertainty). The 2004 and 2006 seasons showed early sowings (late September) the 2003 and 2008 seasons were slightly delayed at the beginning of November. Sowing dates were not correlated to the seasonal rainfall events; this led us to formulate the hypothesis that sowing dates could be much more influenced by the harvest date of the preceding crop and soil moisture, which are related to rains but also to the date of last irrigations and to the wind. The second activity was related to define farm typologies. Temporal trajectories of winter and summer crops cultivated areas were estimated at farm scale level based on satellite data time series in the 2003-2013 periods. The validation demonstrated that the method was able to produce maps with high overall accuracy (OA 92%) and very low commission errors (3% for summer crops and 7% for winter crops). Omission errors were very low for summer crops (3%) and higher but within an acceptable level for winter crops (31%). Temporal trajectories of annual winter and summer crop land use at farm level were assumed as indicators of farm management (e.g. intensive monoculture farm or diversified crop producer). Trajectories were analysed through a hierarchical clustering procedure to identify farm management typologies. We were able to identify six typologies out of 140 farm samples, covering 75% of the arable land in the study area. A semantic interpretation of the farm types, allowed formulating hypothesis to describe farming systems. The size of the farms seemed to be an explanatory variable of the intensive or extensive farm management. The two main activities presented in this thesis highlighted the importance of time series spatial and temporal resolution for crop monitoring purposes. Currently, only heterogeneous remotely sensed data in terms of spatial and temporal resolutions are available for agricultural monitoring. Forthcoming sensors (i.e. ESA Sentinel-II A/B) will offer the chance to exploit coexisting high spatial and temporal resolutions for the first time. A preliminary application of an innovative methodology for the fusion of heterogeneous spatio-temporal resolution remotely sensed datasets was provided in the final section of the thesis with the aim to (i) produce high spatio-temporal resolution time series and (ii) verify the quality and the usefulness of the generated time series for monitoring the main European cultivated crops. The experiment positively demonstrated the contribution of data fusion techniques for the production of time series at high space-time resolution for crop monitoring purposes. The application of data fusion techniques in the main methodologies presented in this work appears to be beneficial. To conclude this thesis framework, satellite remotely sensed data properly analyzed has shown to be a reliable tool to study large-scale crop cultivations and to retrieve spatially and temporally distributed information of cropping systems. Remote sensing time series analyses lead to highlight patterns of intra- and inter-annual dynamics of agro-practices and were also useful to define farm typologies based on multi-temporal land use trajectories. Results contribute in enriching the studies and the characterization of the Camargue study area, in particular providing information such as sowing dates that are not available at present for the considered study area and represent a step forward in respect to the actual (static) available crop calendar informations. Moreover, the achieved results provide supplementary information layers for summarize and classify the diversity of the farm in the study area and to characterize farming systems

    Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection

    Get PDF
    Low resolution satellite imagery has been extensively used for crop monitoring and yield forecasting for over 30 years and plays an important role in a growing number of operational systems. The combination of their high temporal frequency with their extended geographical coverage generally associated with low costs per area unit makes these images a convenient choice at both national and regional scales. Several qualitative and quantitative approaches can be clearly distinguished, going from the use of low resolution satellite imagery as the main predictor of final crop yield to complex crop growth models where remote sensing-derived indicators play different roles, depending on the nature of the model and on the availability of data measured on the ground. Vegetation performance anomaly detection with low resolution images continues to be a fundamental component of early warning and drought monitoring systems at the regional scale. For applications at more detailed scales, the limitations created by the mixed nature of low resolution pixels are being progressively reduced by the higher resolution offered by new sensors, while the continuity of existing systems remains crucial for ensuring the availability of long time series as needed by the majority of the yield prediction methods used today.JRC.H.4-Monitoring Agricultural Resource

    Evaluating the sustainability of urban agriculture projects

    Get PDF
    Evaluating the sustainability of urban agriculture projects. 5. International Symposium for Farming Systems Design (AGRO2015

    Spatio-temporal Analysis of Agriculture in the Vietnamese Mekong Delta using MODIS Imagery

    Get PDF
    New methodologies using MODIS time‒series imagery were developed for revealing spatio‒temporal changes of agricultural environments and land use patterns in the Vietnamese Mekong Delta. The following methodologies were proposed:a Wavelet based Filter for Crop Phenology (WFCP), a Wavelet‒based fi lter for evaluating the spatial distribution of Cropping Systems (WFCS), and a Wavelet‒based fi lter for detecting spatio‒temporal changes in Flood Inundation(WFFI). The WFCP algorithm involves smoothing the temporal profi le of the Enhanced Vegetation Index (EVI) using the wavelet transform approach. As a result of validation using the agricultural statistical data in Japan, it was shown that the WFCP was able to estimate rice growing stages, including transplanting date, heading date and harvesting date from the smoothed EVI data, with 9‒12 days accuracy(RMSE). The WFCS algorithm was developed for detecting rice‒cropping patterns in the Vietnamese Mekong delta based on WFCP. It was revealed that the spatial distribution of rice cropping seasons was characterized by both annual fl ood inundation around the upper region in the rainy season and salinity intrusion around the coastal region in the dry season. The WFFI algorithm was developed for estimating start and end dates of fl ood inundation by using time‒series Land Surface Water Index and EVI. Annual intensity of Mekong fl oods was evaluated from 2000 to 2004, at a regional scale. Applying a series of wavelet‒based methodologies to the MODIS data acquired from 2000 to 2006, it was confi rmed that the cropping season for the winter‒spring rice in the fl ood‒prone area fl uctuated depending on the annual change of fl ood scale. It was also confi rmed that the triple rice‒cropped area in the An Giang province expanded from 2000 to 2005, because the construction of a ring‒dike system and water‒resource infrastructure made it possible to sustain a third rice cropping season during the fl ood season. The proposed methodologies(WFCP, WFCS, WFFI) based on MODIS time‒series imagery made it clear that while the rice cropping in the Vietnamese Mekong Delta was quantitatively(annual fl ooding) and qualitatively(salinity intrusion) affected by water‒resource changes, there were some regions where the cultivation system was changed from double rice cropping to triple rice cropping because of the implementation of measures against fl ooding.日本の食料自給率 (2005年時の供給熱量ベース) は、40% と先進7カ国の中で最も低い。日本は、その食料海外依存度の高さから、世界的な食料価格の変動の影響を最も受け易い国と言える。近年の経済発展に伴う中国の大豆輸入量の増加や世界的なエネルギー政策の転換 (バイオエタノール政策) は、世界の穀物需給バランスを不安定にさせつつあり、世界的な問題となっている。さらに、地球温暖化による農業生産影響、増加し続ける世界人口、鈍化する穀物生産性を考えれば、世界の食料需給バランスが将来にわたって安定し続けると言うことはできないだろう。他方、食料増産・生産性向上を目的とした集約的農業の展開は、発展途上国の農業環境にさらなる負荷を与えるかもしれない。世界の食料生産と密接な関係にある日本は、自国の食料安全保障を議論する前提として、急速に変わり行く世界の農業生産現場やそれを取り巻く農業環境を客観的に理解し、世界の農業環境情報を独自の手法によって収集・整理する必要がある。そこで、筆者は、衛星リモートセンシング技術を活用することによって、地球規模の視点で、時間的・空間的な広がりを持って変わり行く農業生産活動とそれを取り巻く農業環境情報を把握・理解するための時系列衛星データ解析手法の確立を目指すこととした。本研究では、インドシナ半島南端に位置するベトナム・メコンデルタを調査対象領域とした。ベトナムは、タイに次ぐ世界第2位のコメ輸出国であり、その輸出米の9割近くが、ベトナム・メコンデルタで生産されたものである。筆者は、ベトナム・メコンデルタを世界の食料安全保障を考える上で重要な食料生産地帯の一つであると考え、本地域における農業環境及び土地利用パターンの時空間変化を明らかにするためのMODIS データを用いた新たな時系列解析手法の開発を行った。 本研究において提案する時系列解析手法は、次の三つである。1. Wavelet‒based Filter for Crop Phenology (WFCP) ,2. Wavelet‒based Filter for evaluating the spatial distribution of Cropping System (WFCS) , 3. Wavelet‒based Filterfor detecting spatio‒temporal changes in Flood Inundation (WFFI) . WFCP は、時系列植生指数 (EVI) を平滑化するためにウェーブレット変換手法を利用しており、日本の農業統計データを用いた検証結果から、水稲生育ステージ (田植日、出穂日、収獲日) を約9-12日 (RMSE) の精度で推定可能であることが示された。WFCP を基に改良されたWFCS は、水稲作付パターンの年次把握を可能にし、ベトナムメコンデルタにおける水稲作付時期の空間分布が、上流部において毎年雨期に発生する洪水と沿岸部において乾季に発生する塩水遡上によって特徴づけられていることを明らかにした。WFFI は、時系列水指数 (LSWI) と植生指数 (EVI) から、湛水期間、湛水開始日・湛水終息日を広域把握し、メコン川洪水強度の年次変化を地域スケールで評価することを可能にする。そして、ウェーブレット変換を利用した一連の手法を、2000~2006年までのMODIS 時系列画像に適用することによって、メコンデルタ上流部の洪水常襲地帯において、冬春米の作付時期が、年次変化する洪水規模に依存していることを明らかにした。また、An Giang 省において、堤防建設 (輪中) や水利施設の建設によって、洪水期における水稲三期作が可能になった地域が、2000~2005年にかけて拡大していることを明らかにした。本研究で提案したMODIS 時系列画像を利用した時系列解析手法 (WFCP、WFCS、WFFI) によって、ベトナムメコンデルタにおける水稲生産が水資源の量的 (洪水) ・質的 (塩水遡上) 変動影響を受ける一方、洪水対策の実施によって、栽培体系を二期作から三期作に変更している地域があることを明らかにした

    Uso de séries temporais do sensor MODIS para identificar diferentes culturas agrícolas

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, Programa de Pós-Graduação em Geografia, 2018.A presente pesquisa objetiva identificar culturas de grãos a partir de séries temporais NDVI MODIS. As culturas agrícolas e regiões analisadas foram: (a) soja, milho e algodão no Estado do Mato Grosso na safra de 2013/2014; (b) trigo no Estado do Rio Grande do Sul; (c) e cultura do arroz no Estado de Santa Catarina. A tese está estruturada em 5 (cinco) capítulos, onde os capítulos de desenvolvimento (2, 3 e 4) foram escritos no formato de artigos científicos. No processamento digital de imagem todas as análises consideraram as seguintes etapas: (a) aquisição das imagens MODIS; (b) tratamento dos ruídos usando o filtro Savitzky- Golay; (c) classificação; e (d) análise de acurácia. A principal diferença metodológica foi a etapa de classificação que utilizou duas abordagens: (a) classificação contínua do terreno considerando as diferentes produções agrícolas (soja, milho e algodão) e os tipos de vegetação a partir de dois métodos de aprendizagem de máquina (Support Vector Machines e Redes Neurais de retro-propagação); e (b) detecção de uma única cultura de pequenos agricultores (arroz em Santa Catarina e trigo no Rio Grande do Sul) usando o método do vizinho mais próximo (caso específico do método K-NN). A primeira abordagem usando classificação contínua do terreno considerou as seguintes assinaturas temporais NDVI: formação florestal, cerrado, pastagem, sistema único de cultivo anual (soja, milho e algodão), sistema duplo de cultivo (soja/milho e soja/algodão) e pivô central (sistema triplo de cultivo). Na classificação foram testados 378 modelos de redes neurais com variações dos parâmetros de entrada e 8 modelos SVM usando diferentes funções Kernel. O índice Kappa mostrou que os melhores modelos da Rede Neural (0,77) e SVM (0,75) foram estatisticamente equivalentes pelo teste McNemar. A classificação baseada no vizinho mais próximo foi constituida de duas fases: (a) geração de imagens métricas (distância Euclidiana e similaridade do cosseno); e (b) definição do melhor valor de corte para caracterizar a máscara da cultura agrícola. Os resultados mostraram diferentes perfis temporais tanto no trigo como no arroz devido às variações do calendário agrícola da região. Nas duas classificações (trigo e arroz), os resultados usando as duas métricas foram estatisticamente equivalentes pelo teste McNemar. Na análise do trigo, a distância Euclidiana obteve um índice Kappa de 0,75 e a semelhança do cosseno um índice Kappa de 0,74. Na análise do arroz a distância Euclidiana obteve um índice Kappa de 0,73 e a semelhança do cosseno um índice Kappa de 0,72. As metodologias descritas demonstram uma grande potencial para o cálculo das áreas de produção agrícola, podendo auxiliar os órgãos federais para o planejamento regional e segurança alimentar.The present research aims to identify grain crops from NDVI MODIS time series. The agricultural crops and the analyzed regions were: (a) soybean, corn and cotton in Mato Grosso State at 2013/14 growing season; (b) wheat in the State of Rio Grande do Sul; (c) and rice in the State of Santa Catarina. The thesis is structured in 5 (five) chapters, where the development chapters (2, 3 and 4) were written in the format of scientific articles. In digital image processing, all analyzes considered the following steps: (a) acquisition of MODIS images; (b) noise treatment using the Savitzky-Golay filter; (c) classification; and (d) accuracy analysis. The main methodological difference was the classification stage that used two approaches: (a) continuous land classification considering the different agricultural production (soybean, corn and cotton) and vegetation types from two methods of machine learning ( Support Vector Machines and Retro-propagation Neural Networks); and (b) detection of a single crop of small farmers (rice in the Santa Catarina and wheat in the Rio Grande do Sul) using the nearest neighbor method (specific case of the K-NN method). The first approach using continuous land classification considered the following NDVI temporal signatures: forest formation, cerrado, pasture, single annual cropping system (soybean, corn and cotton), double cropping system (soybean / corn and soybean / cotton) and pivot (triple cropping system). In the classification were tested 378 models of neural networks with different variations in input parameters and 8 SVM models using different Kernel functions. The Kappa index showed that the best models of the Neural Network (0.77) and SVM (0.75) were statistically equivalent by the McNemar test. The classification based on the nearest neighbor was constituted of two phases: (a) elaboration of metric images (Euclidean distance and similarity of the cosine); and (b) definition of the best threshold value to characterize the agricultural crop mask. The results showed different temporal profiles in both wheat and rice due to variations in the region's agricultural calendar. In both classifications (wheat and rice), the results using the two metrics were statistically equivalent by the McNemar test. In wheat analysis, the Euclidean distance obtained a Kappa index of 0.75 and the cosine similarity a Kappa index of 0.74. In rice analysis, the Euclidian distance obtained a Kappa index of 0.73 and the cosine similarity a Kappa index of 0.72. The methodologies showed a promising potential to determine the areas of crop production and could be very useful for federal agencies for regional planning and food security programs

    Using yield gap analysis to give sustainable intensification local meaning

    Get PDF
    Yield gap analysis is useful to understand the relative contribution of growth-defining, -limiting and -reducing factors to actual yields. This is traditionally performed at the field level using mechanistic crop growth simulation models, and directly up-scaled to the regional and global levels without considering a range of factors intersecting at farm and farming system levels. As an example, these may include farmers' objectives and resource constraints, farm(er) characteristics, rotational effects between subsequent crops or decisions on resource allocation and prioritization of crop management. The objective of this thesis is to gain insights into yield gaps from a farm(ing) systems perspective in order to identify opportunities for sustainable intensification at local level. Three contrasting case studies representing a gradient of intensification and capturing a diversity of agricultural systems were selected for this purpose, namely mixed crop-livestock systems in Southern Ethiopia, rice based-farming systems in Central Luzon (Philippines) and arable farming systems in the Netherlands. A theoretical framework combining concepts of production ecology and methods of frontier analysis was developed to decompose yield gaps into efficiency, resource and technology yield gaps. This framework was applied and tested for the major crops in each case study using crop-specific input-output data for a large number of individual farms. In addition, different statistical methods and data analyses techniques were used in each case study to understand the contribution of farmers' objectives, farm(er) characteristics, cropping frequency and resource constraints to yield gaps and management practices at crop level. Yield gaps were largest for maize and wheat in Southern Ethiopia (ca. 80\\% of the water-limited yield), intermediate for rice in Central Luzon (ca. 50\\% of the climatic potential yield) and smallest for the major arable crops in the Netherlands (ca. 30\\% of the climatic potential yield). The underlying causes of these yield gaps also differed per case study. The technology yield gap explained most of the yield gap observed in Southern Ethiopia, which points to a lack of adoption of technologies able to reach the water-limited yield. The efficiency yield gap was most important for different arable crops in the Netherlands, which suggests a sub-optimal timing, space and form of the inputs applied. The three intermediate yield gaps contributed similarly to the rice yield gap in Central Luzon meaning that sub-optimal quantities of inputs used are as important in this case study as the causes mentioned for the other case studies. Narrowing the yield gap of the major crops does not seem to entail trade-offs with gross margin per unit land in each case study. However, the opposite seems to be true for N use efficiency and labour productivity particularly in Southern Ethiopia and Central Luzon, and to a less extent in the Netherlands. This means that (sustainable) intensification of smallholder agriculture in the tropics needs to go hand-in-hand with agronomic interventions that increase land productivity while ensuring high resource use efficiency and with labour-saving technologies that can reduce the drudgery of farming without compromising crop yields. Other insights at farm(ing) system level were clearer in Southern Ethiopia than in Central Luzon or in the Netherlands. For example, alleviating capital constraints was positively associated with intensification of maize-based farming systems around Hawassa and increases in oxen ownership (an indicator of farm power) was associated with extensification of wheat-based farming systems around Asella. In Central Luzon, farm and regional factors did not lead to different levels of intensification within the variation of rice farms investigated and the most striking effect was that direct-seeding (and thus slightly lower rice yields) was mostly adopted in larger farms, and used lower amounts of hired labour, compared to transplanting. In the Netherlands, the analysis of rotational effects on crop yields provided inconclusive results but confounding effects with e.g. rented land do not allow to conclude that these are not at stake in this farming system. This thesis broadens the discussion on yield gaps by moving from the technical aspects underlying their estimation towards the broader farm level opportunities and constraints undermining their closure. Overall, insights from contrasting case studies support conventional wisdom that intensification of agriculture needs to occur in the 'developing South', where yield gaps are large and resource use efficiency low, while a focus on improving sustainability based on sustainable intensification (or even extensification) is more appropriate in the 'developed North', where yield gaps are small and resource use efficiency high.</p

    Proceedings of the COST SUSVAR/ECO-PB Workshop on organic plant breeding strategies and the use of molecular markers

    Get PDF
    In many countries,national projects are in progress to investigate the sustainable low-input approach.In the present COST network,these projects are coordinated by means of exchange of materials,establishing common methods for assessment and statistical analyses and by combining national experimental results.The common framework is cereal production in low-input sustainable systems with emphasis on crop diversity.The network is organised into six Working Groups,five focusing on specific research areas and one focusing on the practical application of the research results for variety testing:1)plant genetics and plant breeding,2)biostatistics,3)plant nutrition and soil microbiology,4)weed biology and plant competition,5)plant pathology and plant disease resistance biology and 6)variety testing and certification.It is essential that scientists from many disciplines work together to investigate the complex interactions between the crop and its environment,in order to be able to exploit the natural regulatory mechanisms of different agricultural systems for stabilising and increasing yield and quality.The results of this cooperation will contribute to commercial plant breeding as well as official variety testing,when participants from these areas disperse the knowledge achieved through the EU COST Action

    Artificial Neural Networks in Agriculture

    Get PDF
    Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible
    corecore