1,317 research outputs found

    Robust Network Topology Inference and Processing of Graph Signals

    Full text link
    The abundance of large and heterogeneous systems is rendering contemporary data more pervasive, intricate, and with a non-regular structure. With classical techniques facing troubles to deal with the irregular (non-Euclidean) domain where the signals are defined, a popular approach at the heart of graph signal processing (GSP) is to: (i) represent the underlying support via a graph and (ii) exploit the topology of this graph to process the signals at hand. In addition to the irregular structure of the signals, another critical limitation is that the observed data is prone to the presence of perturbations, which, in the context of GSP, may affect not only the observed signals but also the topology of the supporting graph. Ignoring the presence of perturbations, along with the couplings between the errors in the signal and the errors in their support, can drastically hinder estimation performance. While many GSP works have looked at the presence of perturbations in the signals, much fewer have looked at the presence of perturbations in the graph, and almost none at their joint effect. While this is not surprising (GSP is a relatively new field), we expect this to change in the upcoming years. Motivated by the previous discussion, the goal of this thesis is to advance toward a robust GSP paradigm where the algorithms are carefully designed to incorporate the influence of perturbations in the graph signals, the graph support, and both. To do so, we consider different types of perturbations, evaluate their disruptive impact on fundamental GSP tasks, and design robust algorithms to address them.Comment: Dissertatio

    Learning quadrangulated patches for 3D shape parameterization and completion

    Full text link
    We propose a novel 3D shape parameterization by surface patches, that are oriented by 3D mesh quadrangulation of the shape. By encoding 3D surface detail on local patches, we learn a patch dictionary that identifies principal surface features of the shape. Unlike previous methods, we are able to encode surface patches of variable size as determined by the user. We propose novel methods for dictionary learning and patch reconstruction based on the query of a noisy input patch with holes. We evaluate the patch dictionary towards various applications in 3D shape inpainting, denoising and compression. Our method is able to predict missing vertices and inpaint moderately sized holes. We demonstrate a complete pipeline for reconstructing the 3D mesh from the patch encoding. We validate our shape parameterization and reconstruction methods on both synthetic shapes and real world scans. We show that our patch dictionary performs successful shape completion of complicated surface textures.Comment: To be presented at International Conference on 3D Vision 2017, 201

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Dictionary Learning-based Inpainting on Triangular Meshes

    Full text link
    The problem of inpainting consists of filling missing or damaged regions in images and videos in such a way that the filling pattern does not produce artifacts that deviate from the original data. In addition to restoring the missing data, the inpainting technique can also be used to remove undesired objects. In this work, we address the problem of inpainting on surfaces through a new method based on dictionary learning and sparse coding. Our method learns the dictionary through the subdivision of the mesh into patches and rebuilds the mesh via a method of reconstruction inspired by the Non-local Means method on the computed sparse codes. One of the advantages of our method is that it is capable of filling the missing regions and simultaneously removes noise and enhances important features of the mesh. Moreover, the inpainting result is globally coherent as the representation based on the dictionaries captures all the geometric information in the transformed domain. We present two variations of the method: a direct one, in which the model is reconstructed and restored directly from the representation in the transformed domain and a second one, adaptive, in which the missing regions are recreated iteratively through the successive propagation of the sparse code computed in the hole boundaries, which guides the local reconstructions. The second method produces better results for large regions because the sparse codes of the patches are adapted according to the sparse codes of the boundary patches. Finally, we present and analyze experimental results that demonstrate the performance of our method compared to the literature

    Statistical methods for topology inference, denoising, and bootstrapping in networks

    Full text link
    Quite often, the data we observe can be effectively represented using graphs. The underlying structure of the resulting graph, however, might contain noise and does not always hold constant across scales. With the right tools, we could possibly address these two problems. This thesis focuses on developing the right tools and provides insights in looking at them. Specifically, I study several problems that incorporate network data within the multi-scale framework, aiming at identifying common patterns and differences, of signals over networks across different scales. Additional topics in network denoising and network bootstrapping will also be discussed. The first problem we consider is the connectivity changes in dynamic networks constructed from multiple time series data. Multivariate time series data is often non-stationary. Furthermore, it is not uncommon to expect changes in a system across multiple time scales. Motivated by these observations, we in-corporate the traditional Granger-causal type of modeling within the multi-scale framework and propose a new method to detect the connectivity changes and recover the dynamic network structure. The second problem we consider is how to denoise and approximate signals over a network adjacency matrix. We propose an adaptive unbalanced Haar wavelet based transformation of the network data, and show that it is efficient in approximation and denoising of the graph signals over a network adjacency matrix. We focus on the exact decompositions of the network, the corresponding approximation theory, and denoising signals over graphs, particularly from the perspective of compression of the networks. We also provide a real data application on denoising EEG signals over a DTI network. The third problem we consider is in network denoising and network inference. Network representation is popular in characterizing complex systems. However, errors observed in the original measurements will propagate to network statistics and hence induce uncertainties to the summaries of the networks. We propose a spectral-denoising based resampling method to produce confidence intervals that propagate the inferential errors for a number of Lipschitz continuous net- work statistics. We illustrate the effectiveness of the method through a series of simulation studies
    • …
    corecore