13,769 research outputs found

    Data-driven Localization and Estimation of Disturbance in the Interconnected Power System

    Full text link
    Identifying the location of a disturbance and its magnitude is an important component for stable operation of power systems. We study the problem of localizing and estimating a disturbance in the interconnected power system. We take a model-free approach to this problem by using frequency data from generators. Specifically, we develop a logistic regression based method for localization and a linear regression based method for estimation of the magnitude of disturbance. Our model-free approach does not require the knowledge of system parameters such as inertia constants and topology, and is shown to achieve highly accurate localization and estimation performance even in the presence of measurement noise and missing data

    Discrete Adaptive Second Order Sliding Mode Controller Design with Application to Automotive Control Systems with Model Uncertainties

    Full text link
    Sliding mode control (SMC) is a robust and computationally efficient solution for tracking control problems of highly nonlinear systems with a great deal of uncertainty. High frequency oscillations due to chattering phenomena and sensitivity to data sampling imprecisions limit the digital implementation of conventional first order continuous-time SMC. Higher order discrete SMC is an effective solution to reduce the chattering during the controller software implementation, and also overcome imprecisions due to data sampling. In this paper, a new adaptive second order discrete sliding mode control (DSMC) formulation is presented to mitigate data sampling imprecisions and uncertainties within the modeled plant's dynamics. The adaptation mechanism is derived based on a Lyapunov stability argument which guarantees asymptotic stability of the closed-loop system. The proposed controller is designed and tested on a highly nonlinear combustion engine tracking control problem. The simulation test results show that the second order DSMC can improve the tracking performance up to 80% compared to a first order DSMC under sampling and model uncertainties.Comment: 6 pages, 6 figures, 2017 American Control Conferenc
    • …
    corecore