195 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Forecasting User Attention During Everyday Mobile Interactions Using Device-Integrated and Wearable Sensors

    Full text link
    Visual attention is highly fragmented during mobile interactions, but the erratic nature of attention shifts currently limits attentive user interfaces to adapting after the fact, i.e. after shifts have already happened. We instead study attention forecasting -- the challenging task of predicting users' gaze behaviour (overt visual attention) in the near future. We present a novel long-term dataset of everyday mobile phone interactions, continuously recorded from 20 participants engaged in common activities on a university campus over 4.5 hours each (more than 90 hours in total). We propose a proof-of-concept method that uses device-integrated sensors and body-worn cameras to encode rich information on device usage and users' visual scene. We demonstrate that our method can forecast bidirectional attention shifts and predict whether the primary attentional focus is on the handheld mobile device. We study the impact of different feature sets on performance and discuss the significant potential but also remaining challenges of forecasting user attention during mobile interactions.Comment: 13 pages, 9 figure

    EOG-Based Human–Computer Interface: 2000–2020 Review

    Get PDF
    Electro-oculography (EOG)-based brain-computer interface (BCI) is a relevant technology influencing physical medicine, daily life, gaming and even the aeronautics field. EOG-based BCI systems record activity related to users' intention, perception and motor decisions. It converts the bio-physiological signals into commands for external hardware, and it executes the operation expected by the user through the output device. EOG signal is used for identifying and classifying eye movements through active or passive interaction. Both types of interaction have the potential for controlling the output device by performing the user's communication with the environment. In the aeronautical field, investigations of EOG-BCI systems are being explored as a relevant tool to replace the manual command and as a communicative tool dedicated to accelerating the user's intention. This paper reviews the last two decades of EOG-based BCI studies and provides a structured design space with a large set of representative papers. Our purpose is to introduce the existing BCI systems based on EOG signals and to inspire the design of new ones. First, we highlight the basic components of EOG-based BCI studies, including EOG signal acquisition, EOG device particularity, extracted features, translation algorithms, and interaction commands. Second, we provide an overview of EOG-based BCI applications in the real and virtual environment along with the aeronautical application. We conclude with a discussion of the actual limits of EOG devices regarding existing systems. Finally, we provide suggestions to gain insight for future design inquiries

    Optometric examination of children: A literature review

    Get PDF
    This work is an attempt to bring together in one source basic information and techniques for optometric examination of children. Test values expected for different age groups are presented first in each section. The emphasis is on findings that differ from those of adults. Because of this, proportionaly more of the writing regards infants and young children as opposed to those above eight years of age. Following the expected findings are techniques offered in the literature that can be applied to children\u27s testing. Because of the unreliable subjective responses, objective testing is emphasized. The review does not present all techniques in the literature, but attempts to provide basic practical data for a thorough examination of the young child. The areas considered are: visual acuity, refractive error, accommodation, oculomotor system, binocularity/fusion, color vision, visual perceptual motor, and ocular health

    Spatiotemporal techniques in multimodal imaging for brain mapping and epilepsy

    Full text link
    Thesis (Ph.D.)--Boston UniversityThis thesis explored multimodal brain imaging using advanced spatiotemporal techniques. The first set of experiments were based on simulations. Much controversy exists in the literature regarding the differences between magnetoencephalography (MEG) and electroencephalography (EEG}, both practically and theoretically. The differences were explored using simulations that evaluated the expected signal-to-noise ratios from reasonable brain sources. MEG and EEG were found to be complementary, with each modality optimally suited to image activity from different areas of the cortical surface. Consequently, evaluations of epileptic patients and general neuroscience experiments will both benefit from simultaneously collected MEG/EEG. The second set of experiments represent an example of MEG combined with magnetic resonance imaging (MRI) and functional MRI (fMRI) applied to healthy subjects. The study set out to resolve two questions relating to shape perception. First, does the brain activate functional areas sequentially during shape perception, as has been suggested in recent literature? Second, which , if any, functional areas are active time-locked with reaction-time? The study found that functional areas are non-sequentially activated, and that area IT is active time-locked with reaction-time. These two points, coupled with the method for multimodal integration , can help further develop our understanding of shape perception in particular, and cortical dynamics in general for healthy subjects. Broadly, these two studies represent practical guidelines for epilepsy evaluations and brain mapping studies. For epilepsy studies, clinicians could combine MEG and EEG to maximize the probability of finding the source of seizures. For brain mapping in general, EEG, MEG, MRI and fMRI can be combined in the methods outlined here to obtain more sophisticated views of cortical dynamics

    Hybrid image-/model-based gaze-contingent rendering

    Full text link

    Toward Simulation-Based Training Validation Protocols: Exploring 3d Stereo with Incremental Rehearsal and Partial Occlusion to Instigate and Modulate Smooth Pursuit and Saccade Responses in Baseball Batting

    Get PDF
    “Keeping your eye on the ball” is a long-standing tenet in baseball batting. And yet, there are no protocols for objectively conditioning, measuring, and/or evaluating eye-on-ball coordination performance relative to baseball-pitch trajectories. Although video games and other virtual simulation technologies offer alternatives for training and obtaining objective measures, baseball batting instruction has relied on traditional eye-pitch coordination exercises with qualitative “face validation”, statistics of whole-task batting performance, and/or subjective batter-interrogation methods, rather than on direct, quantitative eye-movement performance evaluations. Further, protocols for validating transfer-of-training (ToT) for video games and other simulation-based training have not been established in general ― or for eye-movement training, specifically. An exploratory research study was conducted to consider the ecological and ToT validity of a part-task, virtual-fastball simulator implemented in 3D stereo along with a rotary pitching machine standing as proxy for the live-pitch referent. The virtual-fastball and live-pitch simulation couple was designed to facilitate objective eye-movement response measures to live and virtual stimuli. The objective measures 1) served to assess the ecological validity of virtual fastballs, 2) informed the characterization and comparison of eye-movement strategies employed by expert and novice batters, 3) enabled a treatment protocol relying on repurposed incremental-rehearsal and partial-occlusion methods intended to instigate and modulate strategic eye movements, and 4) revealed whether the simulation-based treatment resulted in positive (or negative) ToT in the real task. Results indicated that live fastballs consistently elicited different saccade onset time responses than virtual fastballs. Saccade onset times for live fastballs were consistent with catch-up saccades that follow the smooth-pursuit maximum velocity threshold of approximately 40-70˚/sec while saccade onset times for virtual fastballs lagged in the order of 13%. More experienced batters employed more deliberate and timely combinations of smooth pursuit and catch-up saccades than less experienced batters, enabling them to position their eye to meet the ball near the front edge of home plate. Smooth pursuit and saccade modulation from treatment was inconclusive from virtual-pitch pre- and post-treatment comparisons, but comparisons of live-pitch pre- and post-treatment indicate ToT improvements. Lagging saccade onset times from virtual-pitch suggest possible accommodative-vergence impairment due to accommodation-vergence conflict inherent to 3D stereo displays

    Biosignal‐based human–machine interfaces for assistance and rehabilitation : a survey

    Get PDF
    As a definition, Human–Machine Interface (HMI) enables a person to interact with a device. Starting from elementary equipment, the recent development of novel techniques and unobtrusive devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals as inputs to control various applications. The current survey aims to review the large literature of the last two decades regarding biosignal‐based HMIs for assistance and rehabilitation to outline state‐of‐the‐art and identify emerging technologies and potential future research trends. PubMed and other databases were surveyed by using specific keywords. The found studies were further screened in three levels (title, abstract, full‐text), and eventually, 144 journal papers and 37 conference papers were included. Four macrocategories were considered to classify the different biosignals used for HMI control: biopotential, muscle mechanical motion, body motion, and their combinations (hybrid systems). The HMIs were also classified according to their target application by considering six categories: prosthetic control, robotic control, virtual reality control, gesture recognition, communication, and smart environment control. An ever‐growing number of publications has been observed over the last years. Most of the studies (about 67%) pertain to the assistive field, while 20% relate to rehabilitation and 13% to assistance and rehabilitation. A moderate increase can be observed in studies focusing on robotic control, prosthetic control, and gesture recognition in the last decade. In contrast, studies on the other targets experienced only a small increase. Biopotentials are no longer the leading control signals, and the use of muscle mechanical motion signals has experienced a considerable rise, especially in prosthetic control. Hybrid technologies are promising, as they could lead to higher performances. However, they also increase HMIs’ complex-ity, so their usefulness should be carefully evaluated for the specific application
    • 

    corecore