6,739 research outputs found

    Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations.

    Get PDF
    We present a novel method for the identification of sets of mutually exclusive gene alterations in a given set of genomic profiles. We scan the groups of genes with a common downstream effect on the signaling network, using a mutual exclusivity criterion that ensures that each gene in the group significantly contributes to the mutual exclusivity pattern. We test the method on all available TCGA cancer genomics datasets, and detect multiple previously unreported alterations that show significant mutual exclusivity and are likely to be driver events

    Similarity Measures for Clustering SNP Data

    Get PDF
    The issue of suitable similarity measures for a particular kind of genetic data – so called SNP data – arises from the GENICA (Interdisciplinary Study Group on Gene Environment Interaction and Breast Cancer in Germany) case-control study of sporadic breast cancer. The GENICA study aims to investigate the influence and interaction of single nucleotide polymorphic (SNP) loci and exogenous risk factors. A single nucleotide polymorphism is a point mutation that is present in at least 1 % of a population. SNPs are the most common form of human genetic variations. In particular, we consider 65 SNP loci and 2 insertions of longer sequences in genes involved in the metabolism of hormones, xenobiotics and drugs as well as in the repair of DNA and signal transduction. Assuming that these single nucleotide changes may lead, for instance, to altered enzymes or to a reduced or enhanced amount of the original enzymes – with each alteration alone having minor effects – we aim to detect combinations of SNPs that under certain environmental conditions increase the risk of sporadic breast cancer. The search for patterns in the present data set may be performed by a variety of clustering and classification approaches. We consider here the problem of suitable measures of proximity of two variables or subjects as an indispensable basis for a further cluster analysis. Generally, clustering approaches are a useful tool to detect structures and to generate hypothesis about potential relationships in complex data situations. Searching for patterns in the data there are two possible objectives: the identification of groups of similar objects or subjects or the identification of groups of similar variables within the whole or within subpopulations. Comparing the individual genetic profiles as well as comparing the genetic information across subpopulations we discuss possible choices of similarity measures, in particular similarity measures based on the counts of matches and mismatches. New matching coefficients are introduced with a more flexible weighting scheme to account for the general problem of the comparison of SNP data: The large proportion of homozygous reference sequences relative to the homo- and heterozygous SNPs is masking the accordances and differences of interest. --GENICA,single nucleotide polymorphism (SNP),sporadic breast cancer,similarity,Matching Coefficient,Flexible Matching Coefficient

    Estimating sample-specific regulatory networks

    Full text link
    Biological systems are driven by intricate interactions among the complex array of molecules that comprise the cell. Many methods have been developed to reconstruct network models of those interactions. These methods often draw on large numbers of samples with measured gene expression profiles to infer connections between genes (or gene products). The result is an aggregate network model representing a single estimate for the likelihood of each interaction, or "edge," in the network. While informative, aggregate models fail to capture the heterogeneity that is represented in any population. Here we propose a method to reverse engineer sample-specific networks from aggregate network models. We demonstrate the accuracy and applicability of our approach in several data sets, including simulated data, microarray expression data from synchronized yeast cells, and RNA-seq data collected from human lymphoblastoid cell lines. We show that these sample-specific networks can be used to study changes in network topology across time and to characterize shifts in gene regulation that may not be apparent in expression data. We believe the ability to generate sample-specific networks will greatly facilitate the application of network methods to the increasingly large, complex, and heterogeneous multi-omic data sets that are currently being generated, and ultimately support the emerging field of precision network medicine

    Deriving a mutation index of carcinogenicity using protein structure and protein interfaces

    Get PDF
    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/

    A Study Of Computational Problems In Computational Biology And Social Networks: Cancer Informatics And Cascade Modelling

    Get PDF
    It is undoubtedly that everything in this world is related and nothing independently exists. Entities interact together to form groups, resulting in many complex networks. Examples involve functional regulation models of proteins in biology, communities of people within social network. Since complex networks are ubiquitous in daily life, network learning had been gaining momentum in a variety of discipline like computer science, economics and biology. This call for new technique in exploring the structure as well as the interactions of network since it provides insight in understanding how the network works and deepening our knowledge of the subject in hand. For example, uncovering proteins modules helps us understand what causes lead to certain disease and how protein co-regulate each others. Therefore, my dissertation takes on problems in computational biology and social network: cancer informatics and cascade model-ling. In cancer informatics, identifying specific genes that cause cancer (driver genes) is crucial in cancer research. The more drivers identified, the more options to treat the cancer with a drug to act on that gene. However, identifying driver gene is not easy. Cancer cells are undergoing rapid mutation and are compromised in regards to the body\u27s normally DNA repair mechanisms. I employed Markov chain, Bayesian network and graphical model to identify cancer drivers. I utilize heterogeneous sources of information to discover cancer drivers and unlocking the mechanism behind cancer. Above all, I encode various pieces of biological information to form a multi-graph and trigger various Markov chains in it and rank the genes in the aftermath. We also leverage probabilistic mixed graphical model to learn the complex and uncertain relationships among various bio-medical data. On the other hand, diffusion of information over the network had drawn up great interest in research community. For example, epidemiologists observe that a person becomes ill but they can neither determine who infected the patient nor the infection rate of each individual. Therefore, it is critical to decipher the mechanism underlying the process since it validates efforts for preventing from virus infections. We come up with a new modeling to model cascade data in three different scenario

    Quantitative evaluation and reversion analysis of the attractor landscapes of an intracellular regulatory network for colorectal cancer

    Get PDF
    The molecular profiles of CMS cancer cells, statistical significance analysis of reversion targets, and synergistic effect analysis of every two nodes inhibition. (XLSX 67 kb
    corecore