602 research outputs found

    Vegetation Dynamics in Ecuador

    Get PDF
    Global forest cover has suffered a dramatic reduction during recent decades, especially in tropical regions, which is mainly due to human activities caused by enhanced population pressures. Nevertheless, forest ecosystems, especially tropical forests, play an important role in the carbon cycle functioning as carbon stocks and sinks, which is why conservation strategies are of utmost importance respective to ongoing global warming. In South America the highest deforestation rates are observed in Ecuador, but an operational surveillance system for continuous forest monitoring, along with the determination of deforestation rates and the estimation of actual carbon socks is still missing. Therefore, the present investigation provides a functional tool based on remote sensing data to monitor forest stands at local, regional and national scales. To evaluate forest cover and deforestation rates at country level satellite data was used, whereas LiDAR data was utilized to accurately estimate the Above Ground Biomass (AGB; carbon stocks) at catchment level. Furthermore, to provide a cost-effective tool for continuous forest monitoring of the most vulnerable parts, an Unmanned Aerial Vehicle (UAV) was deployed and equipped with various sensors (RBG and multispectral camera). The results showed that in Ecuador total forest cover was reduced by about 24% during the last three decades. Moreover, deforestation rates have increased with the beginning of the new century, especially in the Andean Highland and the Amazon Basin, due to enhanced population pressures and the government supported oil and mining industries, besides illegal timber extractions. The AGB stock estimations at catchment level indicated that most of the carbon is stored in natural ecosystems (forest and páramo; AGB ~98%), whereas areas affected by anthropogenic land use changes (mostly pastureland) lost nearly all their storage capacities (AGB ~2%). Furthermore, the LiDAR data permitted the detection of the forest structure, and therefore the identification of the most vulnerable parts. To monitor these areas, it could be shown that UAVs are useful, particularly when equipped with an RGB camera (AGB correlation: R² > 0.9), because multispectral images suffer saturation of the spectral bands over dense natural forest stands, which results in high overestimations. In summary, the developed operational surveillance systems respective to forest cover at different spatial scales can be implemented in Ecuador to promote conservation/ restoration strategies and to reduce the high deforestation rates. This may also mitigate future greenhouse gas emissions and guarantee functional ecosystem services for local and regional populations

    Predicting growing stock volume of Eucalyptus plantations using 3-D point clouds derived from UAV imagery and ALS data

    Get PDF
    Estimating forest inventory variables is important in monitoring forest resources and mitigating climate change. In this respect, forest managers require flexible, non-destructive methods for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly available to measure three-dimensional (3D) canopy structure and to model forest structural attributes. The main objective of this study was to evaluate and compare the individual tree volume estimates derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA) techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly identified using DAP-based point clouds acquired fromUnmannedAerialVehicles(UAV), representing accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression fit based on individual tree height and individual crown area derived from the ITC provided the following results: Model E ciency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3 and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and 0.0004 m3) using DAP and ALS-based estimations, respectively. No significant di erence was found between the observed value (field data) and volume estimation from ALS and DAP (p-value from t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate basal area or biomass stocks in Eucalyptus spp. plantationsinfo:eu-repo/semantics/publishedVersio

    Lidar for Biomass Estimation

    Get PDF

    A Novel Methodology to Estimate Single-Tree Biophysical Parameters from 3D Digital Imagery Compared to Aerial Laser Scanner Data

    Get PDF
    Airborne laser scanner (ALS) data provide an enhanced capability to remotely map two key variables in forestry: leaf area index (LAI) and tree height (H). Nevertheless, the cost, complexity and accessibility of this technology are not yet suited for meeting the broad demands required for estimating and frequently updating forest data. Here we demonstrate the capability of alternative solutions based on the use of low-cost color infrared (CIR) cameras to estimate tree-level parameters, providing a cost-effective solution for forest inventories. ALS data were acquired with a Leica ALS60 laser scanner and digital aerial imagery (DAI) was acquired with a consumer-grade camera modified for color infrared detection and synchronized with a GPS unit. In this paper we evaluate the generation of a DAI-based canopy height model (CHM) from imagery obtained with low-cost CIR cameras using structure from motion (SfM) and spatial interpolation methods in the context of a complex canopy, as in forestry. Metrics were calculated from the DAI-based CHM and the DAI-based Normalized Difference Vegetation Index (NDVI) for the estimation of tree height and LAI, respectively. Results were compared with the models estimated from ALS point cloud metrics. Field measurements of tree height and effective leaf area index (LAIe) were acquired from a total of 200 and 26 trees, respectively. Comparable accuracies were obtained in the tree height and LAI estimations using ALS and DAI data independently. Tree height estimated from DAI-based metrics (Percentile 90 (P90) and minimum height (MinH)) yielded a coefficient of determination (R2) = 0.71 and a root mean square error (RMSE) = 0.71 m while models derived from ALS-based metrics (P90) yielded an R2 = 0.80 and an RMSE = 0.55 m. The estimation of LAI from DAI-based NDVI using Percentile 99 (P99) yielded an R2 = 0.62 and an RMSE = 0.17 m2/m−2. A comparative analysis of LAI estimation using ALS-based metrics (laser penetration index (LPI), interquartile distance (IQ), and Percentile 30 (P30)) yielded an R2 = 0.75 and an RMSE = 0.14 m2/m−2. The results provide insight on the appropriateness of using cost-effective 3D photo-reconstruction methods for targeting single trees with irregular and heterogeneous tree crowns in complex open-canopy forests. It quantitatively demonstrates that low-cost CIR cameras can be used to estimate both single-tree height and LAI in forest inventories

    Estimating mangrove canopy height and above-ground biomass in the Everglades National Park with airborne LiDAR and TanDEM-X data

    Get PDF
    Mangrove forests are important natural ecosystems due to their ability to capture and store large amounts of carbon. Forest structural parameters, such as canopy height and above-ground biomass (AGB), provide a good measure for monitoring temporal changes in carbon content. The protected coastal mangrove forest of the Everglades National Park (ENP) provides an ideal location for studying these processes, as harmful human activities are minimal. We estimated mangrove canopy height and AGB in the ENP using Airborne LiDAR/Laser (ALS) and TanDEM-X (TDX) datasets acquired between 2011 and 2013. Analysis of both datasets revealed that mangrove canopy height can reach up to ~25 m and AGB can reach up to ~250 Mg·ha-1. In general, mangroves ranging from 9 m to 12 m in stature dominate the forest canopy. The comparison of ALS and TDX canopy height observations yielded an R2 = 0.85 and Root Mean Square Error (RMSE) = 1.96 m. Compared to a previous study based on data acquired during 2000-2004, our analysis shows an increase in mangrove stature and AGB, suggesting that ENP mangrove forests are continuing to accumulate biomass. Our results suggest that ENP mangrove forests have managed to recover from natural disturbances, such as HurricaneWilma

    Integrating Remote Sensing Techniques into Forest Monitoring: Selected Topics with a Focus on Thermal Remote Sensing

    Get PDF
    A sustainable management of natural resources, in particular of forests, is of great importance to preserve the ecological, environmental and economic benefits of forests for future generations. An enhanced understanding of the current situation and ongoing trends of forests, e.g. through policy interventions, is crucial to managing the forest wisely. In this context, forest monitoring is essential for collecting the base data required and for observing trends. Despite the wide range of approved methods and techniques for both close-range and satellite-based remote sensing monitoring, ongoing forest monitoring research is still grappling with specific and unresolved questions: The data acquired must be more reliable, in particular over a long-term period; costs need to be reduced through advancements in both methods and technology that offer easier and more feasible ways of interpreting data. This thesis comprises a number of focused studies, each with their individual and specific research questions, and aims to explore the benefits of innovative methods and technologies. The main emphasis of the studies presented is the integration of close-range and satellite-based remote sensing for enhancing the efficiency of forest monitoring. Manuscript I discusses thermal canopy photography, a new field of application. This approach takes advantage of the large differences in temperature between sky and non-sky pixels and overcomes the inconsistencies of finding an optimal threshold. For an unambiguously separation of “sky” and “non-sky” pixels, a global threshold of 0 °C was defined. Currently, optical or hemispherical canopy photography is the most widely used method to extract crown-related variables. However, a number of aspects, such as exposure, illumination conditions, and threshold definition present a challenge in optical canopy photography and dramatically influence the result; consequently, a comparison of the results from optical canopy photography at a different point in time derived is not advisable. For forest monitoring, where repeated measurements of the canopy cover on the same plots were undertaken, it is therefore of utmost importance to devise a standard protocol to estimate changes in and compare the canopy covers. This paper offers such a protocol by introducing thermal canopy photography. A feasible and accurate method that examines the strong correlation (R2 = 0.96) of canopy closure values derived from thermal and optical image pairs. Thermal photography, as a close-range remote sensing technique, also aids data collection and analysis in other contexts, for instance to expand our knowledge about bamboo tree species: Information about the maturity of bamboo culms is of utmost importance for managing bamboo stands because only then the process of lignification is finished and the culm is technically stronger and more resistant to insect and fungi attacks. The findings of a study (Manuscript III) conducted in Pereira, Colombia, show small differences in culm surface temperature between culms of different ages for the bamboo species Guadua angustifolia K., which may be a sign of maturity. The surface temperature of 12 culms was measured after sunrise using the thermal camera system FLIR 60Ebx. This study shows an innovative close-range remote sensing technique which may support researchers’ determination of the maturity of bamboo culms. This research is in its inception phase and our results are the first of this kind. In the context of analyzing, in particular of thermal imagery time-series data, Manuscript (IV) offers a new methodology using advanced statistical methods. Otsu Thresholding, an automatic segmentation technique is used in a first processing step. O’Sullivan penalized splines estimated the temperature profile extracted from the canopy leaf temperature. A final comparison of the different profiles is done by constructing simultaneous confidence bands. The result shows an approximately significant difference in canopy leaf temperature. For this study, we successfully cooperated with the Center for Statistics at Göttingen University (Prof. Kneib). The second close-range remote sensing technology employed in this thesis is terrestrial laser scanning which is used here to enhance our understanding about buttressed trees. Big trees with an irregular non-convex shape are important contributors to aboveground biomass in tropical forests, but an accurate estimation of their biomass is still a challenge and often remains biased. Allometric equations including tree diameter and height as predictors are currently used in tropical forests, but they are often not calibrated for such large and irregular trees where measuring the diameter is quite difficult. Against this background, Manuscript II shows the result of the 3D-analysis of 12 buttressed trees. This study was conducted in the Botanical Garden of Bogor, Indonesia, using a state-of-the-art terrestrial laser scanner. The findings allow for new insights into the irregular geometry of buttressed trees and the methodological approach employed in this paper will help to improve volume and biomass models for this kind of tree. The results suggest a strong relationship (R² = 0.87) between cross-sectional areas at diameter above buttress (DAB) height and the actual tree basal area measured at 1.3 m height. The accuracy of field biomass estimates is crucial if the data are used to calibrate models to predict the forest biomass on landscape level using remote sensing imagery. The linkage between technology and methodology in the context of forest monitoring remote sensing enhance our knowledge in extracting more reliable information on tree cover estimation. The pre-processing of satellite images plays a crucial role in the processing workflow and particularly the illumination correction has a direct effect on the estimated tree cover. Manuscript IV evaluates four DEMs (Pleiades DSM, SRTM30, SRTM V4.1 and SRTM-X) that are available for the area of Shitai County (Anhui Province, Southeast China) for the purpose of an optimized illumination correction and tree cover estimation from optical RapidEye satellite images. The findings presented in this study suggest that the change in tree cover is contingent on the respective digital elevation models used for pre-processing the data. Imagery corrected with the freely available SRTM30 DEM with 30 m resolution leads to a higher accuracy in the estimation of tree cover based on the high-resolution and cost intensive Pleaides DEM. These manuscripts eventually seek to resolve some of the issues and provide answers to some of the detailed questions that still persist at different steps of the forest monitoring process. In future, these new and innovate methods and technologies will maybe integrate into forest monitoring programs

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function

    Get PDF
    Dear Colleagues, The composition, structure and function of forest ecosystems are the key features characterizing their ecological properties, and can thus be crucially shaped and changed by various biotic and abiotic factors on multiple spatial scales. The magnitude and extent of these changes in recent decades calls for enhanced mitigation and adaption measures. Remote sensing data and methods are the main complementary sources of up-to-date synoptic and objective information of forest ecology. Due to the inherent 3D nature of forest ecosystems, the analysis of 3D sources of remote sensing data is considered to be most appropriate for recreating the forest’s compositional, structural and functional dynamics. In this Special Issue of Forests, we published a set of state-of-the-art scientific works including experimental studies, methodological developments and model validations, all dealing with the general topic of 3D remote sensing-assisted applications in forest ecology. We showed applications in forest ecology from a broad collection of method and sensor combinations, including fusion schemes. All in all, the studies and their focuses are as broad as a forest’s ecology or the field of remote sensing and, thus, reflect the very diverse usages and directions toward which future research and practice will be directed

    Estimation of forest variables using radargrammetry on TerraSAR-X data in combination with a high resolution DEM

    Get PDF
    This study uses the backscattered intensity information from SAR images acquired with TerraSAR-X to derive Digital Surface Models with radargrammetry. Then the known ground elevation (from airborne lidar) is subtracted to get Canopy Height Models that are analysed and linked through regression analysis to the forest variables above-ground biomass and tree height. It was found, that the used constellation of image pairs and prediction models produced biomass estimations at stand level with 25.9% and 33.8% relative RMSE, while the height estimations were 11.5% and 12.3%. The analyses were tested at the Swedish test sites Krycklan and Remningstorp

    Airborne LiDAR and high resolution satellite data for rapid 3D feature extraction

    Get PDF
    This work uses the canopy height model (CHM) based workflow for individual tree crown delineation and 3D feature extraction approach (Overwatch Geospatial's proprietary algorithm) for building feature delineation from high-density light detection and ranging (LiDAR) point cloud data in an urban environment and evaluates its accuracy by using very high-resolution panchromatic (PAN) (spatial) and 8-band (multispectral) WorldView-2 (WV-2) imagery. LiDAR point cloud data over San Francisco, California, USA, recorded in June 2010, was used to detect tree and building features by classifying point elevation values. The workflow employed includes resampling of LiDAR point cloud to generate a raster surface or digital terrain model (DTM), generation of a hill-shade image and an intensity image, extraction of digital surface model, generation of bare earth digital elevation model (DEM) and extraction of tree and building features. First, the optical WV-2 data and the LiDAR intensity image were co-registered using ground control points (GCPs). The WV-2 rational polynomial coefficients model (RPC) was executed in ERDAS Leica Photogrammetry Suite (LPS) using supplementary?.RPB file. In the second stage, ortho-rectification was carried out using ERDAS LPS by incorporating well-distributed GCPs. The root mean square error (RMSE) for the WV-2 was estimated to be 0.25 m by using more than 10 well-distributed GCPs. In the second stage, we generated the bare earth DEM from LiDAR point cloud data. In most of the cases, bare earth DEM does not represent true ground elevation. Hence, the model was edited to get the most accurate DEM/ DTM possible and normalized the LiDAR point cloud data based on DTM in order to reduce the effect of undulating terrain. We normalized the vegetation point cloud values by subtracting the ground points (DEM) from the LiDAR point cloud. A normalized digital surface model (nDSM) or CHM was calculated from the LiDAR data by subtracting the DEM from the DSM. The CHM or the normalized DSM represents the absolute height of all aboveground urban features relative to the ground. After normalization, the elevation value of a point indicates the height from the ground to the point. The above-ground points were used for tree feature and building footprint extraction. In individual tree extraction, first and last return point clouds were used along with the bare earth and building footprint models discussed above. In this study, scene dependent extraction criteria were employed to improve the 3D feature extraction process. LiDAR-based refining/ filtering techniques used for bare earth layer extraction were crucial for improving the subsequent 3D features (tree and building) feature extraction. The PAN-sharpened WV-2 image (with 0.5 m spatial resolution) was used to assess the accuracy of LiDAR-based 3D feature extraction. Our analysis provided an accuracy of 98% for tree feature extraction and 96% for building feature extraction from LiDAR data. This study could extract total of 15143 tree features using CHM method, out of which total of 14841 were visually interpreted on PAN-sharpened WV-2 image data. The extracted tree features included both shadowed (total 13830) and non-shadowed (total 1011). We note that CHM method could overestimate total of 302 tree features, which were not observed on the WV-2 image. One of the potential sources for tree feature overestimation was observed in case of those tree features which were adjacent to buildings. In case of building feature extraction, the algorithm could extract total of 6117 building features which were interpreted on WV-2 image, even capturing buildings under the trees (total 605) and buildings under shadow (total 112). Overestimation of tree and building features was observed to be limiting factor in 3D feature extraction process. This is due to the incorrect filtering of point cloud in these areas. One of the potential sources of overestimation was the man-made structures, including skyscrapers and bridges, which were confounded and extracted as buildings. This can be attributed to low point density at building edges and on flat roofs or occlusions due to which LiDAR cannot give as much precise planimetric accuracy as photogrammetric techniques (in segmentation) and lack of optimum use of textural information as well as contextual information (especially at walls which are away from roof) in automatic extraction algorithm. In addition, there were no separate classes for bridges or the features lying inside the water and multiple water height levels were also not considered. Based on these inferences, we conclude that the LiDAR-based 3D feature extraction supplemented by high resolution satellite data is a potential application which can be used for understanding and characterization of urban setup
    corecore