14,589 research outputs found

    Unbiased Comparative Evaluation of Ranking Functions

    Full text link
    Eliciting relevance judgments for ranking evaluation is labor-intensive and costly, motivating careful selection of which documents to judge. Unlike traditional approaches that make this selection deterministically, probabilistic sampling has shown intriguing promise since it enables the design of estimators that are provably unbiased even when reusing data with missing judgments. In this paper, we first unify and extend these sampling approaches by viewing the evaluation problem as a Monte Carlo estimation task that applies to a large number of common IR metrics. Drawing on the theoretical clarity that this view offers, we tackle three practical evaluation scenarios: comparing two systems, comparing kk systems against a baseline, and ranking kk systems. For each scenario, we derive an estimator and a variance-optimizing sampling distribution while retaining the strengths of sampling-based evaluation, including unbiasedness, reusability despite missing data, and ease of use in practice. In addition to the theoretical contribution, we empirically evaluate our methods against previously used sampling heuristics and find that they generally cut the number of required relevance judgments at least in half.Comment: Under review; 10 page

    Active Sampling for Large-scale Information Retrieval Evaluation

    Get PDF
    Evaluation is crucial in Information Retrieval. The development of models, tools and methods has significantly benefited from the availability of reusable test collections formed through a standardized and thoroughly tested methodology, known as the Cranfield paradigm. Constructing these collections requires obtaining relevance judgments for a pool of documents, retrieved by systems participating in an evaluation task; thus involves immense human labor. To alleviate this effort different methods for constructing collections have been proposed in the literature, falling under two broad categories: (a) sampling, and (b) active selection of documents. The former devises a smart sampling strategy by choosing only a subset of documents to be assessed and inferring evaluation measure on the basis of the obtained sample; the sampling distribution is being fixed at the beginning of the process. The latter recognizes that systems contributing documents to be judged vary in quality, and actively selects documents from good systems. The quality of systems is measured every time a new document is being judged. In this paper we seek to solve the problem of large-scale retrieval evaluation combining the two approaches. We devise an active sampling method that avoids the bias of the active selection methods towards good systems, and at the same time reduces the variance of the current sampling approaches by placing a distribution over systems, which varies as judgments become available. We validate the proposed method using TREC data and demonstrate the advantages of this new method compared to past approaches

    A practical guide and software for analysing pairwise comparison experiments

    Get PDF
    Most popular strategies to capture subjective judgments from humans involve the construction of a unidimensional relative measurement scale, representing order preferences or judgments about a set of objects or conditions. This information is generally captured by means of direct scoring, either in the form of a Likert or cardinal scale, or by comparative judgments in pairs or sets. In this sense, the use of pairwise comparisons is becoming increasingly popular because of the simplicity of this experimental procedure. However, this strategy requires non-trivial data analysis to aggregate the comparison ranks into a quality scale and analyse the results, in order to take full advantage of the collected data. This paper explains the process of translating pairwise comparison data into a measurement scale, discusses the benefits and limitations of such scaling methods and introduces a publicly available software in Matlab. We improve on existing scaling methods by introducing outlier analysis, providing methods for computing confidence intervals and statistical testing and introducing a prior, which reduces estimation error when the number of observers is low. Most of our examples focus on image quality assessment.Comment: Code available at https://github.com/mantiuk/pwcm

    How performance based payoffs influence estimates of complex information? An experimental study on quality and precision in estimation tasks

    Get PDF
    This paper investigates the processing of repeated complex information. The focus of this study is, whether additional information and the introduction of performance-based payoffs have an influence on judgement. Therefore, an experiment is designed to investigate the degree of precision and quality of interval estimates. The data shows that providing additional information decreases the precision of stated estimates, while it improves its quality. The same result is obtained, when performance-based payoffs are introduced to an otherwise hypothetical decision environment. That means, while the variation in the treatment variables increase the quality of the estimate, the precision as a reflection of the decision makers confidence is reduced. --interval estimates,uncertainty,judgmental estimation,repeated information,hypothetical versus payoffs,experiment

    Evaluating epistemic uncertainty under incomplete assessments

    Get PDF
    The thesis of this study is to propose an extended methodology for laboratory based Information Retrieval evaluation under incomplete relevance assessments. This new methodology aims to identify potential uncertainty during system comparison that may result from incompleteness. The adoption of this methodology is advantageous, because the detection of epistemic uncertainty - the amount of knowledge (or ignorance) we have about the estimate of a system's performance - during the evaluation process can guide and direct researchers when evaluating new systems over existing and future test collections. Across a series of experiments we demonstrate how this methodology can lead towards a finer grained analysis of systems. In particular, we show through experimentation how the current practice in Information Retrieval evaluation of using a measurement depth larger than the pooling depth increases uncertainty during system comparison

    A retrieval evaluation methodology for incomplete relevance assessments

    Get PDF
    In this paper we a propose an extended methodology for laboratory based Information Retrieval evaluation under in complete relevance assessments. This new protocol aims to identify potential uncertainty during system comparison that may result from incompleteness. We demonstrate how this methodology can lead towards a finer grained analysis of systems. This is advantageous, because the detection of uncertainty during the evaluation process can guide and direct researchers when evaluating new systems over existing and future test collections

    PRES: A score metric for evaluating recall-oriented information retrieval applications

    Get PDF
    Information retrieval (IR) evaluation scores are generally designed to measure the effectiveness with which relevant documents are identified and retrieved. Many scores have been proposed for this purpose over the years. These have primarily focused on aspects of precision and recall, and while these are often discussed with equal importance, in practice most attention has been given to precision focused metrics. Even for recalloriented IR tasks of growing importance, such as patent retrieval, these precision based scores remain the primary evaluation measures. Our study examines different evaluation measures for a recall-oriented patent retrieval task and demonstrates the limitations of the current scores in comparing different IR systems for this task. We introduce PRES, a novel evaluation metric for this type of application taking account of recall and the userā€™s search effort. The behaviour of PRES is demonstrated on 48 runs from the CLEF-IP 2009 patent retrieval track. A full analysis of the performance of PRES shows its suitability for measuring the retrieval effectiveness of systems from a recall focused perspective taking into account the userā€™s expected search effort
    • ā€¦
    corecore