3,067 research outputs found

    Arbeiten zur Optischen Kohärenztomographie, Magnetresonanzspektroskopie und Ultrahochfeld-Magnetresonanztomographie

    Get PDF
    Abstrakt (Deutsch) Hintergrund: Die Multiple Sklerose ist eine der häufigsten neurologischen Erkrankungen, die zu Behinderung bereits im jungen Erwachsenenalter führen kann. Hierzu tragen im Krankheitsprozess sowohl neuroinflammatorische wie auch neurodegenerative Komponenten bei. Moderne bildgebende Verfahren wie die Ultrahochfeld-Magnetresonanztomographie (UHF-MRT), die Optische Kohärenztomographie (OCT) und die Magnetresonanzspektroskopie (MRS) können benutzt werden, um diese neurodegenerativen Prozesse näher zu charakterisieren und im zeitlichen Verlauf zu beobachten. Zielsetzung: Ziel ist es, die genannten Verfahren zur Charakterisierung von Kohorten von MS-Patienten einzusetzen und die Verfahren zueinander, sowie mit klinischen Parametern in Beziehung zu setzen oder diagnostisch zu nutzen. Methodik: Patienten mit Multipler Sklerose oder Neuromyelitis optica wurden klinisch-neurologisch, mit Optischer Kohärenztomographie, Sehprüfungen, Untersuchungen der visuell evozierten Potentiale (VEP), (Ultrahochfeld-) Magnetresonanztomographie und Magnetresonanzspektroskopie untersucht. Ergebnisse: Die in der Studie eingesetzten bildgebenden Verfahren konnten dazu beitragen, Neuroinflammation und Neurodegeneration bei an Multiple Sklerose erkrankten Patienten näher zu charakterisieren. So steht eine mittels OCT messbare Verdünnung retinaler Nervenfaserschichten (RNFL) in Zusammenhang mit dem per MRT gemessenen Hirnparenchymvolumen und Neurodegeneration anzeigenden Parametern, die mithilfe der Magnetresonanzspektroskopie untersucht wurden. Mithilfe der UHF-MRT konnte ein Zusammenhang zwischen dem Volumen und der entzündlichen Läsionslast der Sehstrahlung, der RNFL-Dicke, VEP-Latenzen und Einschränkungen des Sehvermögens dargestellt werden. Außerdem ließen sich mit der UHF-MRT auch neurogenerative Aspekte im Sinne von bleibenden Parenchymdefekten innerhalb entzündlicher Läsionen und einer Verschmächtigung der Sehstrahlung nachweisen und die Detektion insbesondere kortikaler MS-Läsionen wurde im Vergleich zur konventionellen MRT verbessert. Zusammenfassung: OCT, MRS und UHF-MRT sind Verfahren, die eine genauere Beschreibung von Neuroinflammation und Neurodegeneration bei MS-Patienten ermöglichen, wie hier vor allem für die Sehbahn gezeigt wurde. Sie sind nichtinvasiv und lassen sich zur näheren Charakterisierung des aktuellen Zustandes und zur Beobachtung des Krankheitsverlaufs von MS-Patienten benutzen.Abstract (English) Background: Multiple sclerosis (MS) is the most common disabling neurologic disease, that causes impairment in younger people. Both neuroinflammatory and neurodegenerative processes contribute to the pathogenesis of multiple sclerosis. Innovative imaging methods, such as ultra-high field magnetic resonance tomography (UHF-MRI), optic coherence tomography (OCT) and magnetic resonance spectroscopy (MRS) can be used for characterizing these neurodegenerative processes in detail and over time course. Objective: To use the imaging methods mentioned above to further characterize cohorts of MS patients and to correlate the parameters with themselves as well as with clinical parameters and to evaluate their prognostic and diagnostic relevance. Methods: Patients with multiple sclerosis were examined clinically, by OCT, visual acuity testing, examination of visually evoked potentials, ultra high field magnetic resonance tomography and magnetic resonance spectroscopy. Results: The imaging methods used in these studies contributed to further characterize neuroinflammation und neurodegeneration in multiple sclerosis patients. A thinning of the retinal nerve fiber layer (RNFL) is correlated with brain parenchyma volume measured by MRI, and markers indicating ongoing neurodegenerative processes as detected by MRS. Using UHF-MRI, a correlation between optic radiation properties (such as inflammatory lesion load and its volume) and RNFL thickness, VEP latencies and visual impairment could be demonstrated. Furthermore, UHF-MRI demonstrated neurodegenerative aspects such as parenchymal defects within inflammatory lesions, an optic radiation thinning and allowed a more precise detection of MS lesions than conventional MRI, in particular cortical grey matter lesions. Summary: OCT, MRS and UHF-MRI are feasible methods to provide a more detailed description of neuroinflammation and neurodegeneration in MS patients, as demonstrated in these studies particularly for the visual pathway. They are non-invasive and can be utilized for clinical to study the disease course and also in differential diagnostic procedures

    Measurement variability following MRI system upgrade

    Get PDF
    Major hardware/software changes to MRI platforms, either planned or unplanned, will almost invariably occur in longitudinal studies. Our objective was to assess the resulting variability on relevant imaging measurements in such context, specifically for three Siemens Healthcare Magnetom Trio upgrades to the Prismafit platform. We report data acquired on three healthy volunteers scanned before and after three different platform upgrades. We assessed differences in image signal (contrast-to-noise ratio (CNR)) on T1-weighted images (T1w) and fluid-attenuated inversion recovery images (FLAIR); brain morphometry on T1w image; and small vessel disease (white matter hyperintensities; WMH) on FLAIR image. Prismafit upgrade resulted in higher (30%) and more variable neocortical CNR and higher brain volume and thickness mainly in frontal areas. A significant relationship was observed between neocortical CNR and cortical volume. For FLAIR images, no significant CNR difference was observed, but WMH volumes were significantly smaller (-68%) after Prismafit upgrade, when compared to results on the Magnetom Trio. Together, these results indicate that Prismafit upgrade significantly influenced image signal, brain morphometry measures and small vessel diseases measures and that these effects need to be taken into account when analyzing results from any longitudinal study undergoing similar changes

    The Global ECT-MRI Research Collaboration (GEMRIC): Establishing a multi-site investigation of the neural mechanisms underlying response to electroconvulsive therapy.

    Get PDF
    Major depression, currently the world's primary cause of disability, leads to profound personal suffering and increased risk of suicide. Unfortunately, the success of antidepressant treatment varies amongst individuals and can take weeks to months in those who respond. Electroconvulsive therapy (ECT), generally prescribed for the most severely depressed and when standard treatments fail, produces a more rapid response and remains the most effective intervention for severe depression. Exploring the neurobiological effects of ECT is thus an ideal approach to better understand the mechanisms of successful therapeutic response. Though several recent neuroimaging studies show structural and functional changes associated with ECT, not all brain changes associate with clinical outcome. Larger studies that can address individual differences in clinical and treatment parameters may better target biological factors relating to or predictive of ECT-related therapeutic response. We have thus formed the Global ECT-MRI Research Collaboration (GEMRIC) that aims to combine longitudinal neuroimaging as well as clinical, behavioral and other physiological data across multiple independent sites. Here, we summarize the ECT sample characteristics from currently participating sites, and the common data-repository and standardized image analysis pipeline developed for this initiative. This includes data harmonization across sites and MRI platforms, and a method for obtaining unbiased estimates of structural change based on longitudinal measurements with serial MRI scans. The optimized analysis pipeline, together with the large and heterogeneous combined GEMRIC dataset, will provide new opportunities to elucidate the mechanisms of ECT response and the factors mediating and predictive of clinical outcomes, which may ultimately lead to more effective personalized treatment approaches

    Expanding the role of functional mri in rehabilitation research

    Get PDF
    Functional magnetic resonance imaging (fMRI) based on blood oxygenation level dependent (BOLD) contrast has become a universal methodology in functional neuroimaging. However, the BOLD signal consists of a mix of physiological parameters and has relatively poor reproducibility. As fMRI becomes a prominent research tool for rehabilitation studies involving repeated measures of the human brain, more quantitative and stable fMRI contrasts are needed. This dissertation enhances quantitative measures to complement BOLD fMRI. These additional markers, cerebral blood flow (CBF) and cerebral blood volume (CBV) (and hence cerebral metabolic rate of oxygen (CMRO₂) modeling) are more specific imaging markers of neuronal activity than BOLD. The first aim of this dissertation assesses feasibility of complementing BOLD with quantitative fMRI measures in subjects with central visual impairment. Second, image acquisition and analysis are developed to enhance quantitative fMRI by quantifying CBV while simultaneously acquiring CBF and BOLD images. This aim seeks to relax assumptions related to existing methods that are not suitable for patient populations. Finally, CBF acquisition using a low-cost local labeling coil, which improves image quality, is combined with simultaneous acquisition of two types of traditional BOLD contrast. The demonstrated enhancement of CBF, CBV and CMRO₂measures can lead to better characterization of pathophysiology and treatment effects.Ph.D.Committee Chair: Hu, Xiaoping; Committee Member: Benkeser, Paul; Committee Member: Keilholz, Shella; Committee Member: Sathian, Krish; Committee Member: Schuchard, Ronal

    Longitudinal assessment of multiple sclerosis with the brain-age paradigm

    Get PDF
    OBJECTIVE: During the natural course of MS, the brain is exposed to ageing as well as disease effects. Brain ageing can be modelled statistically; the so-called 'brain-age' paradigm. Here, we evaluated whether brain-predicted age difference (brain-PAD) was sensitive to the presence of MS, clinical progression and future outcomes. METHODS: In a longitudinal, multi-centre sample of 3,565 MRI scans, in 1,204 MS and clinically-isolated syndrome (CIS) patients and 150 healthy controls (mean follow-up time: patients 3.41 years, healthy controls 1.97 years), we measured 'brain-predicted age' using T1-weighted MRI. We compared brain-PAD between MS and CIS patients and healthy controls, and between disease subtypes. Relationships between brain-PAD and Expanded Disability Status Scale (EDSS) were explored. RESULTS: MS patients had markedly higher brain-PAD than healthy controls (mean brain-PAD +10.3 years [95% CI 8.5, 12.1] versus 4.3 years [-2.1, 6.4], p < 0.001). The highest brain-PADs were in secondary-progressive MS (+19.4 years [17.1, 21.9]). Brain-PAD at study entry predicted time-to-disability progression (hazard ratio 1.02 [1.01, 1.03], p < 0.001); though normalised brain volume was a stronger predictor. Greater annualised brain-PAD increases were associated with greater annualised EDSS score (r = 0.26, p < 0.001). INTERPRETATION: The brain-age paradigm is sensitive to MS-related atrophy and clinical progression. A higher brain-PAD at baseline was associated with more rapid disability progression and the rate of change in brain-PAD related to worsening disability. Potentially, 'brain-age' could be used as a prognostic biomarker in early-stage MS, to track disease progression or stratify patients for clinical trial enrolment. This article is protected by copyright. All rights reserved

    Estimating the effect of a scanner upgrade on measures of grey matter structure for longitudinal designs

    Get PDF
    Longitudinal imaging studies are crucial for advancing the understanding of brain development over the lifespan. Thus, more and more studies acquire imaging data at multiple time points or with long follow-up intervals. In these studies changes to magnetic resonance imaging (MRI) scanners often become inevitable which may decrease the reliability of the MRI assessments and introduce biases. We therefore investigated the difference between MRI scanners with subsequent versions (3 Tesla Siemens Verio vs. Skyra) on the cortical and subcortical measures of grey matter in 116 healthy, young adults using the well-established longitudinal FreeSurfer stream for T1-weighted brain images. We found excellent between-scanner reliability for cortical and subcortical measures of grey matter structure (intra-class correlation coefficient > 0.8). Yet, paired t-tests revealed statistically significant differences in at least 67% of the regions, with percent differences around 2 to 4%, depending on the outcome measure. Offline correction for gradient distortions only slightly reduced these biases. Further, T1-imaging based quality measures reflecting gray-white matter contrast systematically differed between scanners. We conclude that scanner upgrades during a longitudinal study introduce bias in measures of cortical and subcortical grey matter structure. Therefore, before upgrading a MRI scanner during an ongoing study, researchers should prepare to implement an appropriate correction method for these effects

    Development Of Human Brain Network Architecture Underlying Executive Function

    Get PDF
    The transition from late childhood to adulthood is characterized by refinements in brain structure and function that support the dynamic control of attention and goal-directed behavior. One broad domain of cognition that undergoes particularly protracted development is executive function, which encompasses diverse cognitive processes including working memory, inhibitory control, and task switching. Delineating how white matter architecture develops to support specialized brain circuits underlying individual differences in executive function is critical for understanding sources of risk-taking behavior and mortality during adolescence. Moreover, neuropsychiatric disorders are increasingly understood as disorders of brain development, are marked by failures of executive function, and are linked to the disruption of evolving brain connectivity. Network theory provides a parsimonious framework for modeling how anatomical white matter pathways support synchronized fluctuations in neural activity. However, only sparse data exists regarding how the maturation of white matter architecture during human brain development supports coordinated fluctuations in neural activity underlying higher-order cognitive ability. To address this gap, we capitalize on multi-modal neuroimaging and cognitive phenotyping data collected as part of the Philadelphia Neurodevelopmental Cohort (PNC), a large community-based study of brain development. First, diffusion tractography methods were applied to characterize how the development of structural brain network topology supports domain-specific improvements in cognitive ability (n=882, ages 8-22 years old). Second, structural connectivity and task-based functional connectivity approaches were integrated to describe how the development of anatomical constraints on functional communication support individual differences in executive function (n=727, ages 8-23 years old). Finally, the systematic impact of head motion artifact on measures of structural connectivity were characterized (n=949, ages 8-22 years old), providing important guidelines for studying the development of structural brain network architecture. Together, this body of work expands our understanding of how developing white matter connectivity in youth supports the emergence of functionally specialized circuits underlying executive processing. As diverse types of psychopathology are increasingly linked to atypical brain maturation, these findings could collectively lead to earlier diagnosis and personalized interventions for individuals at risk for developing mental disorders

    Improving longitudinal spinal cord atrophy measurements for clinical trials in multiple sclerosis by using the generalised boundary shift integral (GBSI)

    Get PDF
    Spinal cord atrophy is a common and clinically relevant feature of multiple sclerosis (MS), and can be used to monitor disease progression and as an outcome measure in clinical trials. Spinal cord atrophy is conventionally estimated with segmentation-based methods (e.g., cross-sectional spinal cord area (CSA)), where spinal cord change is calculated indirectly by numerical difference between timepoints. In this thesis, I validated the generalised boundary shift integral (GBSI), as the first registration-based method for longitudinal spinal cord atrophy measurement. The GBSI registers the baseline and follow-up spinal cord scans in a common half-way space, to directly determine atrophy on the cord edges. First, on a test dataset (9 MS patients and 9 controls), I have found that GBSI presented with lower random measurement error, than CSA, reflected by lower standard deviation, coefficient of variation and median absolute deviation. Then, on multi-centre, multi-manufacturer, and multi–field‐strength scans (282 MS patients and 82 controls), I confirmed that GBSI provided lower measurement variability in all MS subtypes and controls, than CSA, resulting into better separation between MS patients and controls, improved statistical power, and reduced sample size estimates. Finally, on a phase 2 clinical trial (220 primary-progressive MS patients), I demonstrated that spinal cord atrophy measurements on GBSI could be obtained from brain scans, considering their quality and association with corresponding spinal cord MRI-derived measurements. Not least, 1-year spinal cord atrophy measurements on GBSI, but not CSA, were associated with upper and lower limb motor function. In conclusion, spinal cord atrophy on the GBSI had higher measurement precision and stronger clinical correlates, than the segmentation method, and could be derived from high-quality brain acquisitions. Longitudinal spinal cord atrophy on GBSI could become a gold standard for clinical trials including spinal cord atrophy as an outcome measure, but should remain a secondary outcome measure, until further advancements increase the ease of acquisition and processing

    Studying neuroanatomy using MRI

    Get PDF
    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works

    The costs and benefits of estimating T-1 of tissue alongside cerebral blood flow and arterial transit time in pseudo-continuous arterial spin labeling

    Get PDF
    Multi-post-labeling-delay pseudo-continuous arterial spin labeling (multi-PLD PCASL) allows for absolute quantification of the cerebral blood flow (CBF) as well as the arterial transit time (ATT). Estimating these perfusion parameters from multi-PLD PCASL data is a non-linear inverse problem, which is commonly tackled by fitting the single-compartment model (SCM) for PCASL, with CBF and ATT as free parameters. The longitudinal relaxation time of tissue T-1t is an important parameter in this model, as it governs the decay of the perfusion signal entirely upon entry in the imaging voxel. Conventionally, T-1t is fixed to a population average. This approach can cause CBF quantification errors, as T-1t can vary significantly inter- and intra-subject. This study compares the impact on CBF quantification, in terms of accuracy and precision, of either fixing T-1t, the conventional approach, or estimating it alongside CBF and ATT. It is shown that the conventional approach can cause a significant bias in CBF. Indeed, simulation experiments reveal that if T-1t is fixed to a value that is 10% off its true value, this may already result in a bias of 15% in CBF. On the other hand, as is shown by both simulation and real data experiments, estimating T-1t along with CBF and ATT results in a loss of CBF precision of the same order, even if the experiment design is optimized for the latter estimation problem. Simulation experiments suggest that an optimal balance between accuracy and precision of CBF estimation from multi-PLD PCASL data can be expected when using the two-parameter estimator with a fixed T-1t value between population averages of T-1t and the longitudinal relaxation time of blood T-1b
    corecore