405 research outputs found

    Estimating Time Delay in Gravitationally Lensed Fluxes

    Get PDF
    We study the problem of estimating the time delay between two signals representing delayed, irregularly sampled and noisy versions of the same underlying pattern. We propose a kernel-based technique in the context of an astronomical problem, namely estimating the time delay between two gravitationally lensed signals from a distant quasar. We test the algorithm on several artificial data sets, and also on real astronomical observations. By carrying out a statistical analysis of the results we present a detailed comparison of our method with the most popular methods for time delay estimation in astrophysics. Our method yields more accurate and more stable time delay estimates. Our methodology can be readily applied to current state-of-the-art optical monitoring data in astronomy, but can also be applied in other disciplines involving similar time series data

    Kernel regression estimates of time delays between gravitationally lensed fluxes

    Full text link
    Strongly lensed variable quasars can serve as precise cosmological probes, provided that time delays between the image fluxes can be accurately measured. A number of methods have been proposed to address this problem. In this paper, we explore in detail a new approach based on kernel regression estimates, which is able to estimate a single time delay given several datasets for the same quasar. We develop realistic artificial data sets in order to carry out controlled experiments to test of performance of this new approach. We also test our method on real data from strongly lensed quasar Q0957+561 and compare our estimates against existing results.Comment: Updated to match published versio

    X-ray Observations of Gravitationally Lensed Quasars; Evidence for a Hidden Quasar Population

    Get PDF
    The large magnification factors of gravitationally lensed (GL) systems allow us to investigate the properties of quasars with X-ray luminosities that are substantially lower than those of unlensed ones and also provide an independent means of estimating the contribution of faint quasars to the hard X-ray component of the cosmic X-ray background. Our spectral analysis indicate a flattening of the spectral index in the hard band (4-20keV restframe) for 2 radio-loud quasars in the GL quasar sample for which the data have moderate signal-to-noise ratio. We have identified a large fraction of Broad Absorption Line (BAL) quasars amongst the GL quasar population. We find that approximately 35% of radio-quiet GL quasars contain BAL features which is significantly larger than the 10% fraction of BAL quasars presently found in optically selected flux limited quasar samples. We present a simple model that estimates the effects of attenuation and lens magnification on the luminosity function of quasars and that explains the observed fraction of GL BAL quasars. These observations suggest that a large fraction of BAL quasars are missed from flux limited optical surveys. Modeling of several X-ray observations of the GL BAL quasar PG1115+080 suggests that the observed large X-ray variability may be caused in part by a variable intrinsic absorber consistent with previously observed variability of the BAL troughs in the UV band. The observed large X-ray flux variations in PG1115+080 offer the prospect of considerably reducing errors in determining the time delay with future X-ray monitoring of this system and hence constraining the Hubble constant H0_{0}.Comment: 19 pages, 10 figures, 9 Tables, accepted for publication in Ap

    Gravitational Lenses as High-Resolution Telescopes

    Full text link
    The inner regions of active galaxies host the most extreme and energetic phenomena in the universe including, relativistic jets, supermassive black hole binaries, and recoiling supermassive black holes. However, many of these sources cannot be resolved with direct observations. I review how strong gravitational lensing can be used to elucidate the structures of these sources from radio frequencies up to very high energy gamma rays. The deep gravitational potentials surrounding galaxies act as natural gravitational lenses. These gravitational lenses split background sources into multiple images, each with a gravitationally-induced time delay. These time delays and positions of lensed images depend on the source location, and thus, can be used to infer the spatial origins of the emission. For example, using gravitationally-induced time delays improves angular resolution of modern gamma-ray instruments by six orders of magnitude, and provides evidence that gamma-ray outbursts can be produced at even thousands of light years from a supermassive black hole, and that the compact radio emission does not always trace the position of the supermassive black hole. These findings provide unique physical information about the central structure of active galaxies, force us to revise our models of operating particle acceleration mechanisms, and challenge our assumptions about the origin of compact radio emission. Future surveys, including LSST, SKA, and Euclid, will provide observations for hundreds of thousands of gravitationally lensed sources, which will allow us to apply strong gravitational lensing to study the multi-wavelength structure for large ensembles of sources. This large ensemble of gravitationally lensed active galaxies will allow us to elucidate the physical origins of multi-wavelength emissions, their connections to supermassive black holes, and their cosmic evolution.Comment: Invited (Accepted) review for Physics Report

    PG 1115+080: variations of the A2/A1 flux ratio and new values of the time delays

    Full text link
    We report the results of our multicolor observations of PG 1115+080 with the 1.5-m telescope of the Maidanak Observatory (Uzbekistan, Central Asia) in 2001-2006. Monitoring data in filter R spanning the 2004, 2005 and 2006 seasons (76 data points) demonstrate distinct brightness variations of the source quasar with the total amplitude of almost 0.4 mag. Our R light curves have shown image C leading B by 16.4d and image (A1+A2) by 12d that is inconsistent with the previous estimates obtained by Schechter et al. in 1997 - 24.7d between B and C and 9.4d between (A1+A2) and C. The new values of time delays in PG 1115+080 must result in larger values for the Hubble constant, thus reducing difference between its estimates taken from the gravitational lenses and with other methods. Also, we analyzed variability of the A2/A1 flux ratio, as well as color changes in the archetypal "fold" lens PG 1115+080. We found the A1/A2 flux ratio to grow during 2001-2006 and to be larger at longer wavelengths. In particular, the A2/A1 flux ratio reached 0.85 in filter I in 2006. We also present evidence that both the A1 and A2 images might have undergone microlensing during 2001-2006, with the descending phase for A1 and initial phase for A2. We find that the A2/A1 flux ratio anomaly in PG 1115 can be well explained both by microlensing and by finite distance of the source quasar from the caustic fold.Comment: 14 pages, 7 figures, 8 tables, Accepted for publication in MNRA

    The quasar-galaxy cross SDSS J1320+1644: A probable large-separation lensed quasar

    Full text link
    We report the discovery of a pair of quasars at z=1.487z=1.487, with a separation of 8\farcs585\pm0\farcs002. Subaru Telescope infrared imaging reveals the presence of an elliptical and a disk-like galaxy located almost symmetrically between the quasars, creating a cross-like configuration. Based on absorption lines in the quasar spectra and the colors of the galaxies, we estimate that both galaxies are located at redshift z=0.899z=0.899. This, as well as the similarity of the quasar spectra, suggests that the system is a single quasar multiply imaged by a galaxy group or cluster acting as a gravitational lens, although the possibility of a binary quasar cannot be fully excluded. We show that the gravitational lensing hypothesis implies these galaxies are not isolated, but must be embedded in a dark matter halo of virial mass ∼4×1014 h70−1 M⊙\sim 4 \times 10^{14}\ h_{70}^{-1}\ {M}_\odot assuming an NFW model with a concentration parameter of cvir=6c_{vir}=6, or a singular isothermal sphere profile with a velocity dispersion of ∼670\sim 670 km s−1^{-1}. We place constraints on the location of the dark matter halo, as well as the velocity dispersions of the galaxies. In addition, we discuss the influence of differential reddening, microlensing and intrinsic variability on the quasar spectra and broadband photometry.Comment: Published in The Astrophysical Journa

    COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses XIII: Time delays and 9-yr optical monitoring of the lensed quasar RX J1131-1231

    Full text link
    We present the results from nine years of optically monitoring the gravitationally lensed z=0.658 quasar RX J1131-1231. The R-band light curves of the four individual images of the quasar were obtained using deconvolution photometry for a total of 707 epochs. Several sharp quasar variability features strongly constrain the time delays between the quasar images. Using three different numerical techniques, we measure these delays for all possible pairs of quasar images while always processing the four light curves simultaneously. For all three methods, the delays between the three close images A, B, and C are compatible with being 0, while we measure the delay of image D to be 91 days, with a fractional uncertainty of 1.5% (1 sigma), including systematic errors. Our analysis of random and systematic errors accounts in a realistic way for the observed quasar variability, fluctuating microlensing magnification over a broad range of temporal scales, noise properties, and seasonal gaps. Finally, we find that our time-delay measurement methods yield compatible results when applied to subsets of the data.Comment: 11 pages, 9 figures, minor additions to the text only, techniques and results remain unchanged, A&A in pres
    • …
    corecore