633 research outputs found

    Measurements of surface river Doppler velocities with along-track InSAR using a single antenna

    Get PDF
    Nowadays, a worldwide database containing the historical and reliable data concerning the water surface speed of rivers is not available and would be highly desirable. In order to meet this requirement, the present work is aimed at the design of an estimation procedure for water flow velocity by means of synthetic aperture radar (SAR) data. The main technical aspect of the proposed procedure is that an along-track geometry is synthesized using a single antenna and a single image. This is achieved by exploiting a multichromatic analysis in the Doppler domain. The application of this approach allows us to obtain along-track interferometry equivalent virtual baselines much lower than the equivalent baseline corresponding to the decorrelation time of raw data preserving data coherence. The performance analysis, conducted on live airborne full-polarimetric SAR data, highlights the effectiveness of the proposed approach in providing reliable river surface velocity estimates without the need of multiple passes on the observed scene

    Sea ice local surface topography from single-pass satellite InSAR measurements: a feasibility study

    Get PDF
    Quantitative parameters characterizing the sea ice surface topography are needed in geophysical investigations such as studies on atmosphere–ice interactions or sea ice mechanics.Recently, the use of space-borne single-pass interferometric synthetic aperture radar (InSAR) for retrieving the ice surface topography has attracted notice among geophysicists. In this paper the potential of InSAR measurements is examined for several satellite configurations and radar frequencies, considering statistics of heights and widths of ice ridges as well as possible magnitudes of ice drift. It is shown that, theoretically, surface height variations can be retrievedwith relative errors < 0.5 m. In practice, however, the sea ice drift and open water leads may contribute significantly to the measured interferometric phase. Another essential factor is the dependence of the achievable interferometric baseline on the satellite orbit configurations. Possibilities to assess the influence of different factors on the measurement accuracy are demonstrated: signal-to-noise ratio, presence of a snow layer, and the penetration depth into the ice. Practical examples of sea surface height retrievals from bistatic SAR images collectedduring the TanDEM-X Science Phase are presented

    Ocean surface currents derived from Sentinel-1 SAR Doppler shift measurements

    Get PDF
    Reliable information about ocean surface currents is crucial for operational oceanography, regulating weather development, and climate research (e.g., UN SDG 13). Upper-ocean currents are also key for monitoring life below water, including conservation of marine biodiversity at every trophic level (e.g., UN SDG 14). Locating upper ocean currents “with the right strength at the right place and time” is moreover critically needed to support the maritime transport sector, renewable marine energy, and maritime safety operations as well as for monitoring and tracking of marine pollution. In spite of this, upper ocean currents and their variability are mostly indirectly estimated and often without quantitative knowledge of uncertainties. In this thesis, Sentinel-1 Synthetic Aperture Radar (SAR) based Doppler frequency shift observations are examined for the retrievals of ocean surface current velocity in the radar line-of-sight direction. In the first study (Paper 1), Sentinel-1 A/B Interferometric Wide (IW) data acquired along the northern part of the Norwegian coastal zone from October-November 2017 at a spatial resolution of 1.5 km are compared with independent in-situ data, ocean model fields, and coastal High-Frequency Radar observations. Although only a limited dataset was available, the findings and results reveal that the strength of the meandering Norwegian Coastal Current derived from the SAR Doppler frequency shift observations are consistent with observations. However, limitations are encountered due to insufficient calibration and lack of ability to properly partition the geophysical signals into wave and current contributions. A novel approach for calibration of the attitude contribution to the Sentinel-1B Wave Mode (WV) Doppler frequency shift emerged for a test period in December 2017 - January 2018. Building on this calibrated dataset, an empirical model function (CDOP3S) for prediction of the sea state-induced contribution to the Doppler shift observations is developed for the global open ocean in Paper 2. The assessment against collocated surface drifter data are promising and suggest that the Sentinel-1B WV acquisitions can be used to study the equatorial ocean surface currents at a monthly timescale with a 20 km spatial resolution. The calibrated dataset combined with the new geophysical model function developed in Paper 2 also allowed for the study (Paper 3) of ocean surface current retrievals from the high-resolution Sentinel-1B IW swath data acquired along the coastal zone on northern Norway. In this case, the geophysical model function had to be trained and adjusted for fetch limited coastal sea state conditions. The results demonstrate that the Sentinel-1B SAR-derived ocean surface currents significantly improved, compared to the findings reported in Paper 1. Although the thesis builds on a limited period of observations, constrained by the availability of experimental attitude calibration, the results are all in all promising. Reprocessing of the full Sentinel-1 A/B SAR Doppler shift dataset using the novel attitude bias correction is therefore strongly recommended for further improvement of the empirical model function. Regular use of the Sentinel-1 A/B SAR for ocean surface current monitoring would thus be feasible, leading to advances in studies of upper ocean dynamics in support to the Copernicus Marine Environment Monitoring Service (CMEMS) program and the United Nations (UN) Decade of Ocean Sciences.Doktorgradsavhandlin

    A Tower-Based Radar Study of Temporal Coherence of a Boreal Forest at P-, L-, and C-Bands and Linear Cross Polarization

    Get PDF
    Cross-polarized temporal coherence observations of a boreal forest, acquired using a tower-based radar, are presented in this article. Temporal coherence is analyzed with respect to frequency, temporal baseline, time of day of observation, season, meteorological variables, and biophysical variables. During the summer, P- and L-band temporal coherence exhibited diurnal cycles, which appeared to be due to high rates of transpiration and convective winds during the day. During the winter, freeze-thaw cycles and precipitation resulted in decorrelation. At temporal baselines of seconds to hours, a high temporal coherence was observed even at C-band. The best observation times of the day were midnight and dawn. Temporal coherence is the main limitation of accuracy in interferometric and tomographic forest applications. The observations from this experiment will allow for better spaceborne SAR mission designs for forest applications, better temporal decorrelation modeling, and more accurate forest parameter estimation algorithms using interferometric and tomographic SAR data

    Empirical Relationship Between the Doppler Centroid Derived From X-Band Spaceborne InSAR Data and Wind Vectors

    Get PDF
    One of the challenges in ocean surface current retrieval from synthetic aperture radar (SAR) data is the estimation and removal of the wave-induced Doppler centroid (DC). This article demonstrates empirically the relationship between the dc derived from spaceborne X-band InSAR data and the ocean surface wind and waves. In this study, we analyzed over 300 TanDEM-X image pairs. It is found that the general characteristics of the estimated dc follow the theoretically expected variation with incidence angle, wind speed, and wind direction. An empirical geophysical model function (GMF) is fit to the estimated dc and compared to existing models and previous experiments. Our GMF is in good agreement (within 0.2 m/s) with other models and data sets. It is found that the wind-induced Doppler velocity contributes to the total Doppler velocity with about 15% of the radial wind speed. This is much larger than the sum of the contributions from the Bragg waves (~0.2 m/s) and the wind-induced drift current (~3% of wind speed). This indicates a significant (dominant) contribution of the long wind waves to the SAR dc. Moreover, analysis of dual-polarized data shows that the backscatter polarization ratio (PR=σ⁰VV/σ⁰HH) and the dc polarization difference (PD=|dcVV|-|dcHH|) are systematically larger than 1 and smaller than 0 Hz, respectively, and both increase in magnitude with incidence angle. The estimated PR and PD are compared to other theoretical and empirical models. The Bragg scattering theory-based (pure Bragg and composite surface) models overestimate both PR and PD, suggesting that other scattering mechanisms, e.g., wave breaking, are involved. In general, it is found that empirical models are more consistent with both backscatter and Doppler data than theory-based models. This motivates a further improvement of SAR dc GMFs

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Measurements of Sea Surface Currents in the Baltic Sea Region Using Spaceborne Along-Track InSAR

    Get PDF
    The main challenging problems in ocean current retrieval from along-track interferometric (ATI)-synthetic aperture radar (SAR) are phase calibration and wave bias removal. In this paper, a method based on differential InSAR (DInSAR) technique for correcting the phase offset and its variation is proposed. The wave bias removal is assessed using two different Doppler models and two different wind sources. In addition to the wind provided by an atmospheric model, the wind speed used for wave correction in this work is extracted from the calibrated SAR backscatter. This demonstrates that current retrieval from ATI-SAR can be completed independently of atmospheric models. The retrieved currents, from four TanDEM-X (TDX) acquisitions over the 6resund channel in the Baltic Sea, are compared to a regional ocean circulation model. It is shown that by applying the proposed phase correction and wave bias removal, a good agreement in spatial variation and current direction is achieved. The residual bias, between the ocean model and the current retrievals, varies between 0.013 and 0.3 m/s depending on the Doppler model and wind source used for wave correction. This paper shows that using SAR as a source of wind speed reduces the bias and root-mean-squared-error (RMSE) of the retrieved currents by 20% and 15%, respectively. Finally, the sensitivity of the sea current retrieval to Doppler model and wind errors are discussed

    Retrieval of Ocean Surface Currents and Winds Using Satellite SAR backscatter and Doppler frequency shift

    Get PDF
    Ocean surface winds and currents play an important role for weather, climate, marine life, ship navigation, oil spill drift and search and rescue. In-situ observations of the ocean are sparse and costly. Satellites provide a useful complement to these observations. Synthetic aperture radar (SAR) is particularly attractive due to its high spatial resolution and its capability to extract both sea surface winds and currents day and night and almost independent of weather.The work in this thesis involves processing of along-track interferometric SAR (ATI-SAR) data, analysis of the backscatter and Doppler frequency shift, and development of wind and current retrieval algorithms. Analysis of the Doppler frequency shift showed a systematic bias. A calibration method was proposed and implemented to correct for this bias. Doppler analysis also showed that the wave contribution to the SAR Doppler centroid often dominates over the current contribution. This wave contribution is estimated using existing theoretical and empirical Doppler models. For wind and current retrieval, two methods were developed and implemented.The first method, called the direct method, consists of retrieval of the wind speed from SAR backscatter using an empirical backscatter model. In order to retrieve the radial current, the retrieved wind speed is used to correct for the wave contribution. The current retrieval was assessed using two different (theoretical and empirical) Doppler models and wind inputs (model and SAR-derived). It was found that the results obtained by combining the Doppler empirical model with the SAR-derived wind speed were more consistent with ocean models.The second method, called Bayesian method, consists of blending the SAR observables (backscatter and Doppler shift) with an atmospheric and an oceanic model to retrieve the total wind and current vector fields. It was shown that this method yields more accurate estimates, i.e. reduces the models biases against in-situ measurements. Moreover, the method introduces small scale features, e.g. fronts and meandering, which are weakly resolved by the models.The correlation between the surface wind vectors and the SAR Doppler shift was demonstrated empirically using the Doppler shift estimated from over 300 TanDEM-X interferograms and ECMWF reanalysis wind vectors. Analysis of polarimetric data showed that theoretical models such as Bragg and composite surface models over-estimate the backscatter polarization ratio and Doppler shift polarization difference. A combination of a theoretical Doppler model and an empirical modulation transfer function was proposed. It was found that this model is more consistent with the analyzed data than the pure theoretical models.The results of this thesis will be useful for integrating SAR retrievals in ocean current products and assimilating SAR observables in the atmospheric, oceanic or coupled models. The results are also relevant for preparation studies of future satellite missions

    Temporal fluctuations in the motion of Arctic ice masses from satellite radar interferometry

    Get PDF
    This thesis considers the use of Interferometric Synthetic Aperture Radar (InSAR) for surveying temporal fluctuations in the velocity of glaciers in the Arctic region. The aim of this thesis is to gain a broader understanding of the manner in which the flow of both land- and marine-terminating glaciers varies over time, and to asses the ability of InSAR to resolve flow changes over timescales which provide useful information about the physical processes that control them. InSAR makes use of the electromagnetic phase difference between successive SAR images to produce interference patterns (interferograms) which contain information on the topography and motion of the Earth's surface in the direction of the radar line-of-sight. We apply established InSAR techniques (Goldstein et al., 1993) to (i) the 925 km2 LangjÖkull Ice Cap (LIC) in Iceland, which terminates on land (ii) the 8 500 km2 Flade Isblink Icecap (FIIC) in Northeast Greenland which has both land- and marine-terminating glaciers and (iii) to a 7 000 km2 land-terminating sector of the Western Greenland Ice Sheet (GrIS). It is found that these three regions exhibit velocity variations over contrasting timescales. At the LIC, we use an existing ice surface elevation model and dual-look SAR data acquired by the European Remote Sensing (ERS) satellite to estimate ice velocity (Joughin et al., 1998) during late-February in 1994. A comparison with direct velocity measurements determined by global positioning system (GPS) sensors during the summer of 2001 shows agreement (r2 = 0.86), suggesting that the LIC exhibits moderate seasonal and inter-annual variations in ice flow. At the FIIC, we difference pairs of interferograms (Kwok and Fahnestock, 1996) formed using ERS SAR data acquired between 15th August 1995 and 3rd February 1996 to estimate ice velocity on four separate days. We observe that the flow of 5 of the 8 outlet glaciers varies in latesummer compared with winter, although flow speeds vary by up to 20 % over a 10 day period in August 1995. At the GrIS, we use InSAR (Joughin et al., 1996) and ERS SAR data to reveal a detailed pattern of seasonal velocity variations, with ice speeds in latesummer up to three times greater than wintertime rates. We show that the degree of seasonal speedup is spatially variable and correlated with modeled runoff, suggesting that seasonal velocity changes are controlled by the routing of water melted at the ice sheet surface. The overall conclusion of this work is that the technique of InSAR can provide useful information on fluctuations in ice speed across a range of timescales. Although some ice masses exhibit little or no temporal flow variability, others show marked inter-annual, seasonal and even daily variations in speed. We observe variations in seasonality in ice flow over distances of ~ 10 km and over time periods of ~10 days during late-summer. With the aid of ancillary meteorological data, we are able to establish that rates of flow in western Greenland are strongly moderated by the degree of surface melting, which varies seasonally and secularly. Although the sampling of our data is insufficiently frequent and spans too brief a period for us to derive a general relationship between climate and seasonality of flow, we show that production of meltwater at the ice surface and its delivery to the ice bed play an important role in the modulation of horizontal flow speeds. We suggest that a similarly detailed investigation of other ice masses is required to reduce the uncertainty in predictions of the future Arctic land-ice contribution to sea level in a warming world
    corecore