29 research outputs found

    Toward an Operational Bare Soil Moisture Mapping Using TerraSAR-X Data Acquired Over Agricultural Areas

    Get PDF
    International audienceTerraSAR-X data are processed for an "operational" mapping of bare soils moisture in agricultural areas. Empirical relationships between TerraSAR-X signal and soil moisture were established and validated over different North European agricultural study sites. The results show that the mean error on the soil moisture estimation is less than 4% regardless of the TerraSAR-X configuration (incidence angle, polarization) and the soil surface characteristics (soil surface roughness, soil composition). Furthermore, the potential of TerraSAR-X data (signal, texture features) to discriminate bare soils from other land cover classes in an agricultural watershed was evaluated. The mean signal backscattered from bare soils can be easily differentiated from signals from other land cover classes when the neighboring plots are covered by fully developed crops. This was observed regardless of the TerraSAR-X configuration and the soil moisture conditions. When neighboring plots are covered by early growth crops, a TerraSAR-X image acquired under wet conditions can be useful for discriminating bare soils. Bare soil masks were calculated by object-oriented classifications ofmono-configuration TerraSAR-Xdata. The overall accuracies of the bare soils mapping were higher than 84% for validation based on object and pixel. The bare soils mapping method and the soil moisture relationships were applied to TerraSAR-X images to generate soil moisture maps. The results show that TerraSAR-X sensors provide useful data for monitoring the spatial variations of soil moisture at the within-plot scale. The methods of bare soils moisture mapping developed in this paper can be used in operational applications in agriculture, and hydrology

    Earth observation for water resource management in Africa

    Get PDF

    Modeling water availability for smallholder farming in inland valleys under climate and land use / land cover change in Dano, Burkina Faso

    Get PDF
    Effective water management in inland valley catchments is crucial for adaptation to the adverse impact of climate change and land use and land cover change (LULCC) on smallholder farming systems, poverty reduction, attaining food security, and ecosystem preservations in the West African region. An intensive hydrological instrumentation of four sparse data catchments (Bankandi-Loffing, Mebar, Moutori, and Fafo in Dano, Burkina Faso) has been undertaken in order to better understand hydrological processes which control water availability, to calibrate and validate the physically-based and spatially distributed water balance simulation model WaSiM, to assess the impact of climate and land use and land cover change on water resources, and subsequently to derive strategies for improving the capacity of smallholder farmers to cope with water scarcity and climate variabilities. The instrumentation of the catchment helped to achieve three years (2014-2016) of high temporal and spatial resolution data. The temporal resolutions of meteorological and stream flow data were 5 min to 10 min, six hours to a week for piezometric data, and 30 min to a week for soil moisture data. Five rain recorders, seven stream gauges, 64 piezometers in shallow groundwater (2). Additionally, the groundwater tables of three relatively deep wells (6 m, 16 m, and 25 m deep) were monitored. The analyses of hydrographs and the flow duration curves (FDC) using observed discharge show less discharge in the headwater sub-catchments compared to the downstream sub-catchments. This is due to the low contribution of base flow in the headwater sub-catchments. The decomposition of total runoff using observed hydrographs and stream electric conductivity suggests that interflow is the major contributor to total discharge. The calibration and validation of the Bankandi-Loffing catchment achieved a good model performance using the coefficient of determination (R2), the Nash-Sutcliffe efficiency (NSE), the Kling-Gupta efficiency (KGE), and the percent bias (Pbias). The R2 ranges from 0.47 to 0.95, NSE from 0.40 to 0.95, and KGE from 0.57 to 0.84 between the observed and simulated discharge. The numerical performance for soil moisture modeling is 0.70 for both R2 and NSE, and 0.80 for KGE while for the groundwater table modeling the results are 0.30, 0.20, and 0.5 for R2, NSE, and KGE, respectively. The fact that the transfer of the parameter set from Bankandi-Loffing to Mebar catchment without recalibration resulted in a good model performance (R2: 0.93, NSE: 0.92, and KGE: 0.84 in 2014-2015; R2: 0.65, NSE: 0.64, and KGE: 0.59) suggests the strong robustness of WaSiM in the investigated area. The resulting water balance shows that evapotranspiration is quantitatively the most important hydrological process, physical evaporation dominates the evapotranspiration, and 14% of rainfall runs out of the catchment as discharge. Interflow dominates runoff at the headwater sub-catchments whereas base flow is the major runoff component in the downstream area where the inland valley bottoms are located. The conversion of savanna to cropland leads to an increase of surface runoff. This is potentially associated with an exacerbation of soil erosion and soil fertility loss. Therefore, supplementing the current erosion technique (stone-belt) with agroforestry and/or mulching will reduce the negative effects of land cover change. Two scenarios were considered during the impact assessment. The first scenario evaluated exclusively the climate change impact by utilizing five regional climate models (RCMs) using land use and land cover (LULC) of the year 2013 for both the reference period (1971-2000) and the projection period (2021-2050). Each RCM is composed of the representative concentration pathways (RCPs) 4.5 and 8.5. The results indicate large uncertainty in the discharge projection for the future. Three RCMs predict an increase of total runoff for the projection period compared to the reference period. The mean total runoff increase is +61% (standard deviation Std= 31%) compared to the reference period. However, two RCMs project a decrease of total runoff. The mean total runoff decrease is -34% (Std= 10%) compared to the reference period. The second scenario utilizes the five RCMs and LULC 2013 for the reference period and LULC 2030 for the projection period in order to assess the combined impact of climate change and LULCC. The results suggest that LULCC exacerbates the increase of total runoff in combination with the three RCMs with a mean increase in total runoff by +108% (Std= 38%) compared to the reference period (versus mean= +61% in the first scenario). However, for the two RCMs predicting a decrease of total runoff, LULCC reduces the decrease of total runoff. The mean decrease is -20% (Std= 10%) compared to the reference period (versus mean= -34% in the first scenario). The results of this study can be used as input to water management models in order to derive strategies to cope with present and future water scarcities for smallholder farming in the investigated area.Modélisation de la disponibilité de l'eau pour les petites exploitations agricoles des bas-fonds sous l’influence du changement climatique, d’utilisation des sols / couverture végétale à Dano, Burkina Faso La gestion efficiente des ressources en eau dans les bassins versants des bas-fonds est indispensable non seulement pour l’adaptation aux impacts néfastes du changement climatique, utilisation sols / couverture végétale sur les petites exploitations agricoles, mais aussi pour réduire la pauvreté, l’insécurité alimentaire et préserver les écosystèmes en Afrique de l’Ouest. Une instrumentation hydrologique intensive de quatre (04) bassins versants pourvus de très peu de données (Bankandi-Loffing, Mebar, Moutori et Fafo situés à Dano, Burkina Faso) a été entreprise afin de mieux comprendre les processus hydrologiques qui contrôlent la disponibilité en ressources hydrologiques. Le modèle WaSiM (modèle à base physique distribué) a été utilisé, pour évaluer les impacts du changement climatique, d’utilisation des sols et de couverture végétale sur les ressources en eau. Cette étude pourra aider à développer des stratégies d’amélioration de la capacité des petits exploitants agricoles à surmonter les problèmes de manque d’eau et de variabilités climatiques. L'équipement hydrologique des bassins versants a permis d'obtenir durant trois (03) années (2014-2016) de données de hautes précisions temporelles et spatiales. Les précisions temporelles des données météorologiques et des données de débit des cours d'eau étaient de 5 à 10 minutes. Ces précisions étaient de 6 heures à une semaine pour les données piézométriques et de 30 minutes et une semaine pour les données sur l'humidité du sol. Cinq (05) pluviomètres, sept (07) station limnimétriques, soixante-quatre (64) piézomètres captant la nappe phréatique (< 5 m de profondeur), soixante-quatre (64) points de mesures de l'humidité du sol à trois profondeurs (5 cm, 30 cm et 50 cm) ont été installés et rendus opérationnels sur les quatre bassins versants (leur superficie total est d’environ 65 km2;). De plus, le niveau de la nappe phréatique a été régulièrement mesuré dans trois puits relativement profonds (6 m, 16 m et 25 m de profondeurs respectivement). Les analyses des hydrogrammes et des courbes de débits classés à partir des débits observés révèlent des débits plus faibles dans les sous-bassins en amont par rapport aux sous-bassins en aval. Cela s’explique en partie par la faible contribution des écoulements de base dans les sous-bassins en amont. La décomposition de l’écoulement à l'aide des hydrogrammes de débits observés et de la conductivité électrique des cours d'eau suggère que l'écoulement hypodermique est le principal contributeur des écoulements. La calibration et la validation de WaSiM pour le bassin versant de Bankandi-Loffing ont permis d'obtenir une bonne performance du modèle en utilisant le coefficient de détermination (R2), l'efficacité de Nash-Sutcliffe (NSE), l'efficacité de Kling-Gupta (KGE), et le pourcentage de biais (Pbias). R2 varie de 0,47 à 0,95, NSE de 0,40 à 0,95 et KGE de 0,57 à 0,84 entre les débits observés et les débits simulés. La performance numérique pour la modélisation de l'humidité du sol est de 0,70 pour les deux paramètres de performance R2 et NSE, et de 0,80 pour KGE. Concernant la modélisation du niveau de la nappe phréatique, les résultats sont de 0,30, 0,20 et 0,5 pour R2, NSE et KGE, respectivement. Le fait que le transfert du jeu de paramètres de Bankandi-Loffing au bassin versant de Mebar sans recalibration ait donné lieu à une bonne performance du modèle (R2: 0,93, NSE: 0,92, et KGE: 0,84 en 2014-2015 ; R2: 0,65, NSE: 0,64, et KGE: 0,59 en 2016) dénote une forte robustesse du modèle WaSiM pour la zone d’étude. Le bilan hydrique qui résulte de la modélisation montre que l'évapotranspiration est le processus hydrique le plus important quantitativement. L'évaporation physique est plus importante que la transpiration et 14% des précipitations s'écoulent du bassin versant sous forme d'écoulement de surface. Le ruissellement de surface domine les écoulements dans les sous-bassins en amont, tandis que l'écoulement de base est la principale composante des écoulements dans les sous-bassins en aval où se situent les bas-fonds. La conversion des savanes en terres cultivées entraîne une augmentation du ruissellement de surface. Ceci est potentiellement associé à une exacerbation de l'érosion et à la perte de fertilité des sols. Par conséquent, il serait envisageable de compléter les techniques anti-érosives actuelles (ceinture de pierres) par de l'agroforesterie et/ou du paillage. Deux scénarii ont été considérés lors de l’étude d'impact. Le premier scénario a évalué uniquement l'impact du changement climatique en se servant de cinq (05) modèles climatiques régionaux (RCMs) et de la carte d’utilisation des sols / couverture végétale de l'année 2013 (LULC 2013) pour la période de référence (1971-2000) et pour les projections futures (2021-2050). Chaque RCM est composé de profils représentatifs d’évolution des concentrations (RCPs) 4.5 et 8.5.  Les résultats indiquent une grande incertitude des projections de débits d’écoulement pour l'avenir. Trois RCMs prévoient une augmentation moyenne annuelle de débits de +61% (écart-type Std = 31%) par rapport à la période de référence. En revanche deux RCMs prévoient une diminution des débits de -34% (Std = 10%) en moyenne par rapport à la période de référence. Le deuxième scénario a utilisé les cinq RCMs et le LULC 2013 pour la période de référence et le LULC 2030 pour le futur afin d'évaluer l'impact combiné du changement climatique et de le LULCC. Les résultats suggèrent que le LULCC accentue l'augmentation des débits quand il est combiné avec les trois modèles prévoyant l’augmentation des débits. L'augmentation moyenne des débits est de +108% (Std = 38%) par rapport à la période de référence (contre +61% en moyenne dans le premier scénario). Cependant, pour les deux RCMs qui prévoient une diminution des débits, le LULCC attenue le changement de débit. La diminution moyenne de débit est de -20% (Std = 10%) par rapport à la période de référence (contre –34% en moyenne dans le premier scénario). Les résultats de cette étude pourront servir de données d’entrée aux modèles de gestion des ressources en eau afin d’élaborer des stratégies pour faire face aux pénuries d’eau actuelles et futures pour les petites exploitations agricoles dans la zone d’étude

    Monitoring wetlands and water bodies in semi-arid Sub-Saharan regions

    Get PDF
    Surface water in wetlands is a critical resource in semi-arid West-African regions that are frequently exposed to droughts. Wetlands are of utmost importance for the population as well as the environment, and are subject to rapidly changing seasonal fluctuations. Dynamics of wetlands in the study area are still poorly understood, and the potential of remote sensing-derived information as a large-scale, multi-temporal, comparable and independent measurement source is not exploited. This work shows successful wetland monitoring with remote sensing in savannah and Sahel regions in Burkina Faso, focusing on the main study site Lac Bam (Lake Bam). Long-term optical time series from MODIS with medium spatial resolution (MR), and short-term synthetic aperture radar (SAR) time series from TerraSAR-X and RADARSAT-2 with high spatial resolution (HR) successfully demonstrate the classification and dynamic monitoring of relevant wetland features, e.g. open water, flooded vegetation and irrigated cultivation. Methodological highlights are time series analysis, e.g. spatio-temporal dynamics or multitemporal-classification, as well as polarimetric SAR (polSAR) processing, i.e. the Kennaugh elements, enabling physical interpretation of SAR scattering mechanisms for dual-polarized data. A multi-sensor and multi-frequency SAR data combination provides added value, and reveals that dual-co-pol SAR data is most recommended for monitoring wetlands of this type. The interpretation of environmental or man-made processes such as water areas spreading out further but retreating or evaporating faster, co-occurrence of droughts with surface water and vegetation anomalies, expansion of irrigated agriculture or new dam building, can be detected with MR optical and HR SAR time series. To capture long-term impacts of water extraction, sedimentation and climate change on wetlands, remote sensing solutions are available, and would have great potential to contribute to water management in Africa

    Surface Soil Moisture Retrievals from Remote Sensing:Current Status, Products & Future Trends

    Get PDF
    Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth’s land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today’s world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space

    Estimation of water resources on continental surfaces by multi-sensor microwave remote sensing

    Get PDF
    L'estimació dels recursos hídrics de les superfícies continentals a escala regional i global és fonamental per a una bona gestió dels recursos hídrics. Aquesta estimació cobreix una àmplia gamma de temes i camps, incloent-hi la caracterització dels sòls i dels recursos hídrics a l’escala de la conca, la modelització hidrològica i la predicció i la cartografia d'inundacions. En aquest context, la caracterització dels estats de la superfície continental, per a obtenir millors paràmetres d’entrada als models hidrològics, és essencial per millorar la precisió en la simulació de cabals, sequeres i inundacions. L’estimació del contingut d’aigua en el sistema, incloses les diferents masses d’aigua i l’aigua lliure en el sòl, és especialment necessària per a una descripció precisa dels processos hidrològics i, en general, del cicle de l’aigua a les superfícies continentals. Per caracteritzar millor els processos hidrològics, les intervencions antropogèniques no es poden negligir. L'home influeix en el cicle de l'aigua, principalment mitjançant el reg i la construcció de preses, fet que s’ha de quantificar correctament. L’objectiu de la tesi és la millora de l’estimació remota dels recursos hídrics, incloent-hi la quantificació dels factors antròpics, mitjançant l’ús de diversos sensors llançats recentment, aprofitant recents desenvolupaments en la tecnologia de teledetecció. Amb l'arribada de les constel·lacions Sentinel (Sentinel-1, 2, 3), disposem de millors eines per estimar els recursos hídrics, incloent-hi els impactes humans, amb una major precisió i cobertura. Aquest treball de tesi consta principalment de dues línies de recerca on s’estimen les intervencions humanes en el cicle hidrològic: la cartografia del reg (com a aplicació en humitat del sòl), i el forçament d’embassaments en simulacions hidrològiques (com a aplicació de l’altimetria). En la primera linia s’estima la humitat del sòl a partir de l’anàlisi estadística de les dades SAR de Sentinel-1. Es desenvolupen dues metodologies per obtenir la humitat del sòl amb una resolució espacial de 100 m basant-se en la interpretació de les dades de Sentinel-1 obtingudes amb la polarització VV (vertical-vertical), que es combina amb dades òptiques Sentinel-2 per a l'anàlisi dels efectes de la vegetació. Com aplicació de la humitat del sòl, es cartografia el reg en diverses condicions meteorològiques, i amb una alta resolució espacial i temporal. Es proposa una metodologia per a la cartografia del reg mitjançant dades SAR obtingudes en polaritzacions VV (vertical-vertical) i VH (vertical-horitzontal). A partir de la sèrie temporal Sentinel-1, s’analitzen diferents estadístiques i mètriques, incloent-hi el valor mitjà, la variància del senyal, la longitud de la correlació i la dimensió fractal, a partir dels quals es classifiquen els arbres irrigats, els cultius irrigats i els cultius no irrigats. En la segona línia, s’estima el nivell dels embassaments a partir de les dades d’altimetria de Sentinel-3, amb l’altímetre SAR (SRAL), basant-se en diferents algorismes per millorar la precisió. Aquest estudi presenta tres algorismes especialitzats o retrackers destinats a obtenir el nivell de la superfície dels cossos d’aigua estudiats, minimitzant la contaminació de les formes d’ona degut al sòl que els envolta. Es compara el rendiment del mètode proposat de selecció de la porció d’ona amb tres retrackers, és a dir, un retracker de llindar, el retracker del centre de gravetat (OCOG) i un retracker de base física de dos passos. S’obtenen sèries temporals del nivell de la làmina d’aigua d’embassaments situats a la conca del riu Ebre (Espanya). Com aplicació, les sèries de nivell dels embassaments obtingudes s’utilitzen per a forçar els embassaments en simulacions hidrològiques.La estimación de los recursos hídricos de las superficies continentales a escala regional y global es fundamental para una buena gestión de los recursos hídricos. Esta estimación cubre una amplia gama de temas y campos, incluyendo la caracterización de los suelos y de los recursos hídricos a escala de cuenca, la modelización hidrológica y la predicción y la cartografía de inundaciones. En este contexto, la caracterización de los estados de la superficie continental, para obtener mejores parámetros de entrada para los modelos hidrológicos, es esencial para mejorar la precisión en la simulación de caudales, sequías e inundaciones. La estimación del contenido de agua en el sistema, incluidas las diferentes masas de agua y el agua libre en el suelo, es especialmente necesaria para una descripción precisa de los procesos hidrológicos y, en general, del ciclo del agua en las superficies continentales. Una caracterización precisa de los procesos hidrológicos requiere no descuidar las intervenciones humanas. El hombre influye en el ciclo del agua, principalmente mediante el riego y la construcción de embalses, lo que se debe cuantificar correctamente. El objetivo de la tesis es la mejora de la estimación remota de los recursos hídricos, incluyendo la cuantificación de los factores humanos, mediante el uso de varios sensores lanzados recientemente, aprovechando recientes desarrollos en la tecnología de teledetección. Con la llegada de las constelaciones Sentinel (Sentinel-1, 2, 3), disponemos de mejores herramientas para estimar los recursos hídricos, incluyendo los impactos humanos, con una mayor precisión y cobertura. Este trabajo de tesis consta principalmente en dos ejes de investigación donde se estiman las intervenciones humanas en el ciclo hidrológico: la cartografía del riego (como aplicación en humedad del suelo), y el forzamiento de embalses en simulaciones hidrológicas (como aplicación de la altimetría). En relación al primer eje, se estima la humedad del suelo a partir del análisis estadístico de los datos SAR de Sentinel-1. Se desarrollan dos metodologías para obtener la humedad del suelo con una resolución espacial de 100 m basándose en la interpretación de los datos de Sentinel-1 obtenidas con la polarización VV (vertical-vertical), que se combina con datos ópticas Sentinel-2 para el análisis de los efectos de la vegetación. Como aplicación de la humedad del suelo, se cartografía el riego en diversas condiciones meteorológicas, y con una alta resolución espacial y temporal. Se propone una metodología para la cartografía del riego mediante datos SAR obtenidos en polarizaciones VV (vertical-vertical) y VH (vertical-horizontal). A partir de la serie temporal Sentinel-1, se analizan diferentes estadísticas y métricas, incluyendo el valor medio, la varianza de la señal, la longitud de la correlación y la dimensión fractal, a partir de los cuales se clasifican los árboles irrigados, los cultivos irrigados y los cultivos no irrigados. En el segundo eje, se estima el nivel de los embalses a partir de los datos de altimetría de Sentinel-3, con el altímetro SAR (SRAL), basándose en diferentes algoritmos para mejorar la precisión. Este estudio presenta tres algoritmos especializados o retrackers destinados a obtener el nivel de la superficie de los cuerpos de agua estudiados, minimizando la contaminación de las formas de onda debido al suelo que los rodea. Se compara el rendimiento del método propuesto de selección de la porción de onda con tres retrackers, es decir, un retracker de umbral, el retracker del centro de gravedad (OCOG) y un retracker de base física de dos pasos. Se obtienen series temporales del nivel de la lámina de agua de embalses situados en la cuenca del río Ebro (España). Como aplicación, las series de nivel de los embalses obtenidas se utilizan para forzar los embalses en simulaciones hidrológicas.The estimation of the water resources of the continental surfaces at a regional and global scale is fundamental for good water resources management. This estimation covers a wide range of topics and fields, including the characterisation of soils and water resources at the basin scale, hydrological modelling and flood prediction and mapping. In this context, the characterisation of the states of the continental surface, to obtain better input parameters for hydrological models, is essential to improve the precision in the simulation of flows, droughts, and floods. The estimation of the water content in the system, including the different water bodies and the free water in the soil, is especially necessary for a precise description of the hydrological processes and, in general, of the water cycle on the continental surfaces. To better characterise hydrological processes, human interventions cannot be neglected. Humans influence the water cycle, mainly through irrigation and the construction of reservoirs, which must be correctly quantified. The objective of the thesis is the improvement of the remote estimation of water resources, including the quantification of human factors, using several sensors recently launched, taking advantage of recent developments in remote sensing technology. With the arrival of the Sentinel constellations (Sentinel-1, 2, 3), we have better tools to estimate water resources, including human impacts, with greater precision and coverage. This thesis consists mainly of two parts where human interventions in the water cycle are considered: irrigation cartography (as an application of soil moisture), and the forcing of reservoirs in hydrological simulations (as an application of altimetry). Firstly, soil moisture is estimated from the statistical analysis of Sentinel-1 SAR data. Two methodologies are developed to obtain soil moisture with a spatial resolution of 100 m based on the interpretation of Sentinel-1 data collected with the VV polarization (vertical-vertical), which is combined with optical data of Sentinel-2 for the analysis of the effects of vegetation. Secondly, irrigation is mapped under various meteorological conditions, including high spatial and temporal resolution. A methodology for irrigation mapping is proposed using SAR data obtained in VV (vertical-vertical) and VH (vertical-horizontal) polarizations. With Sentinel-1 time series, different statistics and metrics are analysed, including the mean value, the variance of the signal, the correlation length and the fractal dimension, based on which the classification of irrigated trees, irrigated crops, and non-irrigated crops are derived. Finally, the level of the reservoirs is estimated from the Sentinel-3 altimetry data, with the SAR altimeter (SRAL), based on different algorithms to improve the accuracy. This study presents three specialised algorithms or retrackers designed to obtain the level of the surface of the studied inland bodies of water, minimising the contamination of the waveforms due to the surrounding soil. The performance of the selection method of the proposed wave portion is compared with three retrackers, that is, the centre of gravity retracker (OCOG) and the two-step physical-based retracker. Temporal series of the water level of reservoirs located in the basin of the Ebro River (Spain) are obtained. As an application, the level series of the reservoirs obtained are used to force the reservoirs in hydrological simulations.L'estimation et le suivi des ressources en eau des surfaces continentales aux niveaux régional et global est essentielle pour la gestion du bilan hydrique, particulièrement dans le contexte des changements climatiques et anthropiques. Ils couvrent un large éventail de thèmes et de domaines, incluant la caractérisation des ressources en eau à l'échelle du bassin, la modélisation hydrologique ainsi que la prévision et la cartographie des inondations. Dans ce contexte, la caractérisation des états de surface, en tant que paramètres d’entrée dans les modèles hydrologiques, est essentielle pour obtenir une meilleure précision de la simulation, qui est liée à la précision prévisionnelle des débits des cours d’eau et le suivi des sécheresses et des inondations. L'estimation de la teneur en eau des surfaces continentales, incluant l’état hydrique du sol et les niveaux des surfaces couvertes d’eau, est particulièrement nécessaire pour une description précise des processus hydrologiques et plus généralement du cycle de l'eau sur les surfaces continentales. Afin de mieux comprendre les processus hydrologiques, l'influence humaine (l’effet anthropique) sur le cycle de l'eau nécessite une évaluation fine. Elle est particulièrement liée à la gestion de l’irrigation et la construction de barrages. L'objectif de la thèse était d'améliorer l'estimation des ressources en eau et une meilleure caractérisation des interventions anthropiques à travers l'utilisation de nouveaux capteurs satellitaires multi-configurations du programme européen Copernicus. Avec le développement de la technologie de télédétection spatiale, et plus particulièrement avec l’arrivée des constellations Sentinel (Sentinel-1, 2, 3) à haute résolution spatiale et temporelle, il existe un meilleur outil pour estimer les états des surfaces continentales. Ce travail de thèse comprend principalement deux priorités liées à des interventions humaines dans le cycle hydrologique:la cartographie de l'irrigation en tant que action humaine liée directement à l'humidité du sol et le forçage des barrages dans un modèle de simulation de rivière en tant qu'application liée à l’estimation du niveau de l'eau libre. Un premier axe de recherche a été basé sur une analyse statistique des données SAR Sentinel-1 pour caractériser l’état hydrique du sol. Deux méthodes ont été développées pour estimer ce paramètre avec une résolution spatiale de 100 m. Elles sont basées sur des approches de détection de changement à partir des données Sentinel-1 acquises en polarisation VV (verticale-verticale), combinées aux données optiques Sentinel-2 pour corriger les effets de la végétation. L’application consistait à cartographier l'irrigation, avec des résolutions spatiale et temporelle élevées. Une méthodologie de cartographie de l'irrigation utilisant des données SAR Sentinel-1 a été proposée. Elle estbasée sur les acquisitions en polarisations VV (vertical-vertical) et VH (vertical-horizontal). A partir de la série temporelle des mesures Sentinel-1, des paramètres statistiques tel que la valeur moyenne, la variance du signal, la longueur de corrélation temporelle et la dimension fractale, sont analysées, en fonction du type de culture; cultures annuelles irriguées, arbres irrigués et cultures pluviales. Des classifications supervisées utilisant les approches Random Forest et SVM sont testées. En deuxième axe, l'estimation de la hauteur de la surface de l'eau à partir des données altimétriques de Sentinel-3 avec l’altimètre SAR (SRAL) a été réalisée à l'aide de différents algorithmes afin d'améliorer la précision sur des petites surfaces. Cette étude présente trois algorithmes spécialisés (ou retrackers) dédiées à la minimisation de la contamination des sols par les formes d’ondes permettant de récupérer les niveaux d’eau à partir de données altimétriques SAR sur des masses d’eaux intérieures. Les performances de la méthode de sélection de portion de forme d'onde proposée avec trois retrackers, à savoir, le retracker à seuil, le retracker à centre de gravité décalé (OCOG) et le retracker à base physique à 2 étapes, sont comparées. Des séries chronologiques de niveaux d'eau sont extraites pour les masses d'eau du bassin de l'Èbre (Espagne). Une application des produits altimétriques est proposée. Le produit de niveau d’eau a été utilisé comme paramètre d’entrée pour analyser l’effet tampon des barrages dans les simulations de débits fluviaux

    Multiple hazards risk profiling in West Africa : Assessment, Validation and Upscaling

    Get PDF
    Disasters, particularly recurring small-scale natural disasters of floods and droughts have been affecting West African (WA) communities, impacting particularly weak households. These losses have been significantly high over the last decade due to increasing climate variability and inherently depressed socio-economic systems. However, to date, few studies have attempted to understand the vulnerability profiles in WA to these multiple hazards across several scales. A considerable number of studies predict the impacts of droughts and floods hazards, but many do so at a very coarse scale and without any participatory process, as a result, they are unable to predict localized impacts. Despite many efforts put in vulnerability assessments, there has been limited success in simultaneously traversing scale and hierarchy and the need for upscaling risk indices is important to understand the effects of cross scale interactions. To address these gaps, this thesis (i) explored methods to involve at-risk populations in local communities in a bottom-up participatory process as opposed to the classical top-down, single scale approaches and (ii) assessed the risks from multi-hazard perspectives in a coupled Socio-Ecological System (SES). The thesis also (iii) explored appropriate methodologies that can reflect the spatial variability of flood hazard intensity at community level. Building on these investigations, the thesis finally (iv) introduced a novel risk index upscaling procedure to upscale risk and vulnerability indices across multiple scales. The thesis used several methods ranging from rural participatory methods, statistical, Geographic Information System (GIS), remote sensing and introduced the innovative concept of Community Impact Score (CIS). The results show that more than half of the designated local level indicators and over two thirds of the macro scale indicators are rarely used in present risk assessments in the region. Additionally, although an indicator may be common to three countries, their differential rankings will result in differences in explaining the risks faced by people in different societies. Empirical validation of a flood hazard map using the statistical confusion matrix and the principles of participatory GIS show that flood hazard areas could be mapped at an accuracy ranging from 77% to 81%. These high mapping accuracies notwithstanding, the flood index categories may change under conditions of very high rainfall intensities beyond the anomalies used to construct the model. To this end, studies that aim at understanding projected flood intensities under varying rainfall conditions beyond the anomalies used in this study are recommended. This is important to determine the trajectory of flood safe havens or hotspots across an entire study area. The study also develops two important indices, The West Sudanian Community Vulnerability Index (WESCVI) and The West Sudanian Community Risk Index (WESCRI). The underlying factors constituting the two indices are the elements of risk and vulnerability profiles of communities in West Africa. The WESCVI and WESCRI should help planners and policy makers to analyse and finally reduce vulnerability and risk. To evaluate the results of the risk indices, this thesis introduces a novel technique to validate the results of complex aggregation methods. Based on up to date knowledge, the CIS concept is the first in the available literature of risk assessment. The thesis also provides a theoretical concept to upscale risk and vulnerability indicators from watershed to higher spatial scales. Further studies are however recommended to apply these theoretical concepts. A conclusion of the thesis is that while it has neither been optimal to completely neglect classical approaches nor to take as an absolute fact opinion from local experts, more emphasis should be paid to the later in risk assessment that is supposed to serve the very people on whose behalf the assessment is done. Attempts should therefore be made in finding mechanisms where the two approaches could interact fruitfully and complement each other.Mehrfach-Gefährdungen und Risikoprofile in West Afrika : Abschätzung, Validierung und Hochskalierung Naturgefahren, wie beispielsweise Überflutungen und Dürren, bedrohen die Existenz von Gemeinden und insbesondere schwächeren Haushalten in West Afrika. Durch die zunehmende Klimavariabilität und den geschwächten Zustand der sozial-ökologischen Systeme haben die Verluste während der letzten Dekade ein besonders hohes Ausmaß erreicht. Bisher haben nur wenige Studien versucht, die unterschiedliche Zusammensetzung des Risikos im Hinblick auf mehrere Naturgefahren in Westafrika zu verstehen und über verschiedene Skalen hinweg, von ländlichen Gemeinden hin zu Wassereinzugsgebieten, Distrikten und Regionen zu analysieren. Eine signifikante Anzahl von Studien prognostiziert die zu erwarteten Schäden durch Naturgefahren wie Überflutungen und Dürren. Dies geschieht jedoch oftmals auf einem sehr groben Maßstab, wohingegen wenig über die lokalen Auswirkungen bekannt ist. Trotz mannigfaltiger Anstrengungen in Bezug auf Vulnerabilitätsassessments gab es bisher wenig Erfolg bei der Berücksichtigung verschiedener Skalen und Hierarchien. Die Hochskalierung von Risikoindizes ist jedoch nötig, um die Effekte über verschiedene Skalen hinweg zu verstehen. Diese Forschungslücken werden in dieser Arbeit aufgegriffen und mit methodischen Verfahren über einen „Bottom-up“-Ansatz adressiert, der zunächst die gefährdete Bevölkerung involviert, um die Risiken gegenüber von mehrfachen Gefährdungen in einem sozio-ökologischen System (SES) zu untersuchen. Außerdem verwendet die Studie Methoden, die es ermöglichen, die räumliche Variabilität der Überflutungsintensität auf Gemeindeebene zu reflektieren. Aufbauend auf diesen Forschungsergebnissen stellt diese Arbeit eine neue Vorgehensweise vor, die es erlaubt Verwundbarkeits- und Risikoindizes über verschiedene Skalen hinweg hochzuskalieren. Der Methodenmix umfasst partizipative und statistische Ansätze sowie Methoden basierend auf Geographische Informationssystemen (GIS) und Fernerkundung. Des Weiteren schlägt die Arbeit ein innovatives Konzept zur Quantifizierung der Gefährdungsauswirkungen auf Gemeindeebene vor, den sogenannten „Community Impact Score“ (CIS). Die Ergebnisse zeigen, dass etwas mehr als die Hälfte der in dieser Arbeit abgeleiteten Indikatoren auf Gemeindeebene und über zwei Drittel der Indikatoren auf Makroebene selten in den gegenwärtigen Risikoassessments der Region verwendet werden. Zudem wurde den Indikatoren, selbst wenn sie für alle drei Länder abgeleitet wurden, oftmals eine unterschiedliche Wichtigkeit zugesprochen. Die empirische Validierung der Hochwassergefährdungskarten mittels einer statistischen Konfusionsmatrix basierend auf einem partizipativen GIS zeigt, dass die durch Hochwasser gefährdeten Gebiete mit einer Genauigkeit von 77-81% kartiert werden konnten. Trotz dieser hohen Genauigkeit ist es jedoch möglich, dass sich die Hochwassergefährdungskategorien bei Anomalitäten, die über die modellierten Bedingungen hinausreichen, verändern. Dementsprechend werden weiterführende Studien, die eben diese Bedingungen untersuchen empfohlen. Dies ist zur Bestimmung von sicheren Zufluchtsorten oder Hotspots von großer Bedeutung. In dieser Studie wurden außerdem zwei verschiedene Indizes entwickelt, der sogenannte „West Sudanian Community Vulnerability Index“ (WESCVI) und der „West Sudanian Community Risk Index“ (WESCRI). Die den Indizes zugrunde liegenden Faktoren bilden außerdem die Bestandteile der Risiko- und Vulnerabilitätsprofile für die Gemeinden Westafrikas. Sowohl der WESCVI als auch der WESCRI sollen Planern und politischen Entscheidungsträgern dabei helfen, die Vulnerabilität und das Risiko zu analysieren und zu reduzieren. Um die Ergebnisse der Risikoindizes zu evaluieren stellt diese Arbeit ein innovatives Konzept zur Validierung solch komplexer Aggregationsmethoden vor. Nach aktuellem Kenntnisstand ist das CIS Konzept das erste seiner Art in der erhältlichen Literatur zu Risikoassessments. Des Weiteren wurde ein theoretisches Konzept zur Hochskalierung von Risiko- und Vulnerabilitätsindizes von Wassereinzugsgebieten hin zu höheren Ebenen erarbeitet.Dieses theoretische Konzept bietet eine Basis für weiterführende Untersuchungen im Hinblick auf die Anwendung und Umsetzung. Insgesamt unterstreicht diese Studie, dass weder die klassischen Ansätze allein noch das Gleichsetzen von lokalem Expertenwissen mit der absoluten Wahrheit als optimal erachtet werden können. Die Studie zeigt, dass man dem lokalen Expertenwissen in Risikoassessments mehr Gewicht beimessen sollte. Dementsprechend sollten Ansätze gefunden werden, bei denen sich beide Herangehensweisen erfolgreich ergänzen

    Remote sensing based assessment of land cover and soil moisture in the Kilombero floodplain in Tanzania

    Get PDF
    Wetlands provide important ecological, biological, and social-economic services that are critical for human existence. The increasing demand for food, arable land shortage and changing climate conditions in East Africa have created a paradigm shift from upland cultivation to wetland use due to their year-round soil water availability. However, there is need to control and manage the activities within the wetlands to ensure sustainable use while negating any negative effects caused by these activities. This is implemented through the decisions made by the land managers within the wetlands. Providing the users of the wetlands with scientific knowledge acts as a support tool for policy-making geared towards the sustainable use of the wetlands. The overall research contains two main components: First, the need for timely land cover maps at a reasonable scale, and secondly, the assessment of soil moisture as a major contributor to agricultural production. The objectives of the study were to generate land cover maps from multi-sensor optical datasets and to assess the performance of single-polarized Sentinel-1 Gray Level Co-occurrence Matrix (GLCM) texture and Principal Component Analysis (PCA) features by applying multiple classification algorithms in a floodplain in the Kilombero catchment. Furthermore, soil moisture spatial-temporal patterns over three hydrological zones was assessed, estimation of soil moisture from radar data and generation of soil moisture products from global products was investigated. The correlation of the merged products to Normalized Difference Vegetation Index (NDVI) measures was also investigated. RapidEye, Sentinel-2 and Landsat images were used in determining the areal extents of four major land cover classes namely vegetated, bare, water and built up. The acquisition period of the images ranges from August 2013 to June 2015 for the RapidEye images, December 2015 to August 2016 for the Sentinel-2 images and 2013 to 2016 Landsat-8 images were included in the land cover time series dynamic study. However, the major challenge arising was cloud coverage and hence Sentinel-1 images were tested in the application of Synthetic Aperture Radar (SAR) in wetland mapping. Variograms were used in spatial-temporal assessment of soil moisture data collected from three hydrological zones, riparian, middle and fringe. A roughness parameter was derived from a semi-empirical model. Soil moisture was retrieved from TerraSAR-X and RadarSAT-2 with the retrieved roughness parameter as an input in a linear regression equation. Triple collocation was applied in error assessment of the global soil moisture products prior to development of a merged product. Cross-correlation was applied in relating NDVI to soil moisture. Optical data (RapidEye, Landsat-8, and Sentinel-2) generated land cover maps used in assessing the land cover dynamics over time. The land cover ratios were related to depth to groundwater. As the depth to groundwater reduced in June the bare land coverage was 45-57% while that of vegetation was 34-47%. In December when the depth to groundwater was highest, bare land coverage was 62-69% while that of the vegetated area was 27-25%. This indicates that depth of groundwater and vegetation coverage responds to seasonality. During the dry season, 68-81% of the total vegetation class is within the riparian zone. In the classification of the SAR images, the overall accuracies for the single polarized VV images ranged from 54-76%, 60-81% and 61-80% for Random Forest (RF), Neural Network (NN) and Support Vector Machine (SVM) respectively. GLCM features had overall accuracies of 64-86%, 65-88% and 65-86% for RF, NN, and SVM respectively. PCA derived images had similar overall accuracies of 68-92% for NN, RF, and SVM respectively. The PCA images had the highest overall accuracy for the entire time series indicating that reduction in the number of texture features to layers containing the maximum variance improves the accuracy. The standard deviation of soil moisture was noted to increase with increasing soil moisture. Soil texture plays a key role in soil moisture retention. The riparian fields had a high water content explained by the high clay and organic matter content. A roughness parameter was derived and utilized in the retrieval of soil moisture from SAR resulting to R2 of 0.88- 0.92 between observed and simulated soil moisture values from co-polarized RadarSAT-2 HH and TerraSAR-X HH and VV. Merged soil moisture product from FEWSNET Land Data Assimilation System_NOAH (FLDAS_NOAH), ECMWF Re-Analysis Interim (ERA-Interim) and Soil Moisture and Ocean Salinity (SMOS) and FLDAS_Variable Infiltration Capacity (VIC), ERA-Interim and SMOS had similar patterns attributed to FLDAS_NOAH and FLDAS_VIC forced by the same precipitation product (RFE). Cross-correlation of Moderate-resolution Imaging Spectrometer (MODIS) NDVI and the merged soil moisture products revealed a 2-month lag of NDVI. Hence, the relationship is useful in determining the Start of Season from soil moisture products. In conclusion, the successful land cover mapping of the study area demonstrated the use of satellite imagery for wetland characterization. The vast coverage and frequent acquisitions of optical and microwave remotely sensed data additionally make the approaches transferable to other locations and allow for mapping at larger scales. Soil moisture assessment from point data revealed varied soil moisture patterns whereas global remotely sensed and modeled products rather provide complementary information about growing conditions, and hence a situational assessment tool of potential of physical availability dimension of food security. This study forms a baseline upon which additional monitoring and assessment of the Kilombero wetland ecosystem can be performed with the current results marked as a reference. Moreover, the study serves as a demonstration case of remote sensing based approaches for land cover and soil moisture mapping, whose results are useful to stakeholders to aid in the implementation of adapted production techniques for yield optimization while minimizing the unsustainable use of the natural resources.Feuchtgebiete erbringen wichtige ökologische, biologische und sozial-ökonomische Dienstleistungen, welche entscheidend für das menschliche Dasein sind. Der steigende Bedarf an Nahrung, der Mangel an landwirtschaftlichen Nutzflächen und die Veränderung der klimatischen Bedingungen in Ostafrika haben zu einem Paradigmenwechsel vom Anbau im Hochland hin zur Nutzung von Feuchtgebieten geführt. Allerdings sind Kontrolle und Management der Aktivitäten in Feuchtgebieten notwendig, um die nachhaltige Nutzung zu sichern und negative Effekte dieser Aktivitäten zu vermeiden. Die Implementierung erfolgt durch die Landverwalter in den Feuchtgebieten. Den Nutzern von Feuchtgebieten wissenschaftliche Erkenntnisse bereitzustellen dient als Hilfsmittel zur politischen Entscheidungsfindung für die nachhaltige Feuchtgebietsnutzung. Die Forschung im Rahmen der Dissertation beinhaltet zwei Hauptkomponenten: erstens den Bedarf an aktuellen Landbedeckungskarten auf einer angemessenen Skalenebene und zweitens die Erfassung der Bodenfeuchte als wichtiger Einflussfaktor auf die landwirtschaftliche Produktion. Das Ziel der Untersuchung war, Landbedeckungskarten auf Grundlage von multisensorischen optischen Daten zu erstellen und die Eignung der Textur der einfach polarisierten Sentinel-1 Grauwertmatrix (GLCM) sowie der einer Hauptkomponentenanalyse (PCA) bei Anwendung unterschiedlicher Klassifikationsalgorithmen zu beurteilen. Des Weiteren wurden raum-zeitliche Bodenfeuchtemuster über drei hydrologische Zonen hinweg modelliert, die Bodenfeuchte aus Radardaten abgeleitet sowie die Erstellung von Bodenfeuchteprodukten auf Basis von globalen Produkten untersucht. Die Korrelation der Bodenfeuchteprodukte mit dem Normalisierten Differenzierten Vegetationsindex (NDVI) wurde ebenfalls analysiert. RapidEye, Sentinel-2 und Landsat Bilder wurden genutzt um die räumliche Ausdehnung der vier Hauptklassen (Vegetation, freiliegender Boden, Wasser und Bebauung) der Landbedeckung zu ermitteln. Für die Zeitreihenanalyse der der Landbedeckungsdynamik wurden RapidEye-Daten von August 2013 bis Juni 2015, Sentinel-2-Bilder von Dezember 2015 bis August 2016 und Landsat-8-Bilder von 2013 bis 2016 verwendet. Die größte Herausforderung war jedoch die Wolkenbedeckung, weshalb die Anwendung von Synthetic Aperture Radar (SAR) für die Feuchtgebietskartierung getestet wurde. Die gemessene Bodenfeuchte wurde mittels Variogrammen für die drei hydrologischen Zonen (Uferzone, Mitte und Randgebiete) raum-zeitlich interpoliert. Ein Rauhigkeitsparameter wurde aus einem semi-empirischen Modell hergeleitet. Die Bodenfeuchte wurde aus TerraSAR-X und RadarSAT-2- Bildern unter Verwendung des Rauhigkeitsparameters als Eingangsgröße in einer linearen Regression abgeleitet. Vor der Zusammenführung der Produkte wurde das globale Bodenfeuchteprodukt mithilfe von dreifacher Kollokation auf Fehler überprüft. Die Kreuzkorrelation zwischen NDVI und Bodenfeuchte wurde berechnet. Optische Daten (RapidEye, Landsat-8 und Sentinel-2) wurden genutzt, um die zeitliche Dynamik der Landbedeckung zu bestimmen. Die Landbedeckungsverhältnisse wurde mit der Höhe des Grundwasserspiegels korreliert. Ein hoher Grundwasserstand im Juni resultierte in 45-57% unbedecktem Boden, während der Anteil der Vegetation 34-47% betrug. Im Dezember, als der Grundwasserspiegel seinen Tiefststand hatte, erhöhte sich der Anteil des freiliegenden Bodens auf 62-69% und der Anteil der Vegetation verringerte sich auf 27-25%. Das zeigt, dass Grundwasserspiegel und Vegetation saisonalen Schwankungen unterworfen sind. Während der Trockenzeit liegen 68-81% der gesamten als Vegetation klassifizierten Fläche innerhalb der Uferzone. In der Klassifikation der SAR-Bilder liegt die Gesamtgenauigkeit der einfach polarisierten VV-Bilder im Rahmen von 54-76%, 60-81% und 61-80%, entsprechend für Random Forest (RF), Neuronale Netze (NN) und Support Vector Machine (SVM). Die GLCM ergab eine Gesamtgenauigkeit von 64-86%, 65-88% und 65-86% für RF, NN und SVM. Die über eine PCA abgeleiteten Bilder erreichten eine ähnliche Genauigkeit von 68-92% für NN, RF und SVM. Die PCA-Bilder weisen die höchste Gesamtgenauigkeit der gesamten Zeitreihe auf, was darauf hinweist, dass eine Reduktion von Textureigenschaften auf Layer der maximalen Varianz enthalten, die Genauigkeit erhöht. Die Standardabweichung der Bodenfeuchte stieg mit zunehmender Bodenfeuchte. Die Bodentextur spielt dabei eine Schlüsselrolle für das Wasserhaltevermögen des Bodens. Die Uferzone wies einen hohen Wassergehalt auf, was durch den hohen Anteil von Ton und Humus zu erklären ist. Die beobachteten und simulierten Bodenfeuchtewerte von co-polarisierten RadarSAT-2 HH, TerraSAR-X HH und VV Daten korrelieren mit einem R2 von 0.88 - 0.92. Die zusammengesetzten globalen Bodenfeuchteprodukte von FLDAS_NOAH, ERA-Interim sowie SMOS und FLDAS_VIC, ERA-Interim und SMOS zeigen ähnliche Muster wie FLDAS_NOAH und FLDAS_VIC, was über die Verwendung desselben Niederschlagsproduktes (RFE) zu erklären ist. Die Kreuzkorrelation von MODIS NDVI und den zusammengeführten Bodenfeuchteprodukten ergab eine zeitliche Verzögerung des NDVI von zwei Monaten. Dieser Zusammenhang kann daher bei der Bestimmung des Saisonbeginns aus Bodenfeuchtigkeitsprodukten nützlich sein. Zusammengefasst hat die Studie gezeigt, wie Satellitenbilder zur Charakterisierung von Wetlands genutzt werden können. Die große Abdeckung und häufige Aufnahme der optischen und Mikrowellen-Fernerkundungsdaten ermöglichen darüber hinaus die Übertragung der Ansätze auf weitere Gebiete und Kartierung auf größeren Skalen. Die Punktmessungen zeigen kleinräumige Muster der Bodenfeuchte, während globale Fernerkundungsprodukte und Modelle Informationen über die Wachstumsbedingungen liefern und somit ein Bewertungsinstrument der Ernährungssicherheit darstellen können. Weiterhin bildet die Studie eine Basis, auf der ein weitergehendes Monitoring und eine Bewertung des Feuchtgebietsökosystems durchgeführt werden kann. Sie ist ein Beispiel für fernerkundungsbasierte Ansätze zur Landbedeckungs- und Bodenfeuchtekartierung; ihre Ergebnisse sind nützlich, um Akteuren bei der Implementierung von Produktionstechniken zu unterstützen, welche die Erträge maximieren und gleichzeitig die nicht nachhaltige Nutzung der natürlichen Ressourcen minimieren
    corecore