2,894 research outputs found

    Optimizing Effort Parameter of COCOMO II Using Particle Swarm Optimization Method

    Get PDF
    Estimating the effort and cost of software is an important activity for software project managers. A poor estimate (overestimates or underestimates) will result in poor software project management. To handle this problem, many researchers have proposed various models for estimating software cost. Constructive Cost Model II (COCOMO II) is one of the best known and widely used models for estimating software costs. To estimate the cost of a software project, the COCOMO II model uses software size, cost drivers, scale factors as inputs. However, this model is still lacking in terms of accuracy. To improve the accuracy of COCOMO II model, this study examines the effect of the cost factor and scale factor in improving the accuracy of effort estimation. In this study, we initialized using Particle Swarm Optimization (PSO) to optimize the parameters in a model of COCOMO II. The method proposed is implemented using the Turkish Software Industry dataset which has 12 data items. The method can handle improper and uncertain inputs efficiently, as well as improves the reliability of software effort. The experiment results by MMRE were 34.1939%, indicating better high accuracy and significantly minimizing error 698.9461% and 104.876%

    Exploring the impact of different cost heuristics in the allocation of safety integrity levels

    Get PDF
    Contemporary safety standards prescribe processes in which system safety requirements, captured early and expressed in the form of Safety Integrity Levels (SILs), are iteratively allocated to architectural elements. Different SILs reflect different requirements stringencies and consequently different development costs. Therefore, the allocation of safety requirements is not a simple problem of applying an allocation "algebra" as treated by most standards; it is a complex optimisation problem, one of finding a strategy that minimises cost whilst meeting safety requirements. One difficulty is the lack of a commonly agreed heuristic for how costs increase between SILs. In this paper, we define this important problem; then we take the example of an automotive system and using an automated approach show that different cost heuristics lead to different optimal SIL allocations. Without automation it would have been impossible to explore the vast space of allocations and to discuss the subtleties involved in this problem

    Operational Research in Education

    Get PDF
    Operational Research (OR) techniques have been applied, from the early stages of the discipline, to a wide variety of issues in education. At the government level, these include questions of what resources should be allocated to education as a whole and how these should be divided amongst the individual sectors of education and the institutions within the sectors. Another pertinent issue concerns the efficient operation of institutions, how to measure it, and whether resource allocation can be used to incentivise efficiency savings. Local governments, as well as being concerned with issues of resource allocation, may also need to make decisions regarding, for example, the creation and location of new institutions or closure of existing ones, as well as the day-to-day logistics of getting pupils to schools. Issues of concern for managers within schools and colleges include allocating the budgets, scheduling lessons and the assignment of students to courses. This survey provides an overview of the diverse problems faced by government, managers and consumers of education, and the OR techniques which have typically been applied in an effort to improve operations and provide solutions

    Survivable algorithms and redundancy management in NASA's distributed computing systems

    Get PDF
    The design of survivable algorithms requires a solid foundation for executing them. While hardware techniques for fault-tolerant computing are relatively well understood, fault-tolerant operating systems, as well as fault-tolerant applications (survivable algorithms), are, by contrast, little understood, and much more work in this field is required. We outline some of our work that contributes to the foundation of ultrareliable operating systems and fault-tolerant algorithm design. We introduce our consensus-based framework for fault-tolerant system design. This is followed by a description of a hierarchical partitioning method for efficient consensus. A scheduler for redundancy management is introduced, and application-specific fault tolerance is described. We give an overview of our hybrid algorithm technique, which is an alternative to the formal approach given

    Search-Based Predictive Modelling for Software Engineering: How Far Have We Gone?

    Get PDF
    In this keynote I introduce the use of Predictive Analytics for Software Engineering (SE) and then focus on the use of search-based heuristics to tackle long-standing SE prediction problems including (but not limited to) software development effort estimation and software defect prediction. I review recent research in Search-Based Predictive Modelling for SE in order to assess the maturity of the field and point out promising research directions. I conclude my keynote by discussing best practices for a rigorous and realistic empirical evaluation of search-based predictive models, a condicio sine qua non to facilitate the adoption of prediction models in software industry practices.Predictive analytics Predictive modelling Search-based software engineering Machine learning Software analytic

    A comprehensive literature classification of simulation optimisation methods

    Get PDF
    Simulation Optimization (SO) provides a structured approach to the system design and configuration when analytical expressions for input/output relationships are unavailable. Several excellent surveys have been written on this topic. Each survey concentrates on only few classification criteria. This paper presents a literature survey with all classification criteria on techniques for SO according to the problem of characteristics such as shape of the response surface (global as compared to local optimization), objective functions (single or multiple objectives) and parameter spaces (discrete or continuous parameters). The survey focuses specifically on the SO problem that involves single per-formance measureSimulation Optimization, classification methods, literature survey

    Multi-objective software effort estimation

    Get PDF
    We introduce a bi-objective effort estimation algorithm that combines Confidence Interval Analysis and assessment of Mean Absolute Error. We evaluate our proposed algorithm on three different alternative formulations, baseline comparators and current state-of-the-art effort estimators applied to five real-world datasets from the PROMISE repository, involving 724 different software projects in total. The results reveal that our algorithm outperforms the baseline, state-of-the-art and all three alternative formulations, statistically significantly (p < 0:001) and with large effect size (A12ā‰„ 0:9) over all five datasets. We also provide evidence that our algorithm creates a new state-of-the-art, which lies within currently claimed industrial human-expert-based thresholds, thereby demonstrating that our findings have actionable conclusions for practicing software engineers
    • ā€¦
    corecore