109 research outputs found

    Estimating skeletal muscle fascicle curvature from B-mode ultrasound image sequences

    Get PDF
    We address the problem of tracking in vivo muscle fascicle shape and length changes using ultrasound video sequences. Quantifying fascicle behavior is required to improve understanding of the functional significance of a muscle's geometric properties. Ultrasound imaging provides a noninvasive means of capturing information on fascicle behavior during dynamic movements; to date however, computational approaches to assess such images are limited. Our approach to the problem is novel because we permit fascicles to take up nonlinear shape configurations. We achieve this using a Bayesian tracking framework that is: 1) robust, conditioning shape estimates on the entire history of image observations; and 2) flexible, enforcing only a very weak Gaussian Process shape prior that requires fascicles to be locally smooth. The method allows us to track and quantify fascicle behavior in vivo during a range of movements, providing insight into dynamic changes in muscle geometric properties which may be linked to patterns of activation and intramuscular forces and pressures

    Estimation of Absolute States of Human Skeletal Muscle via Standard B-Mode Ultrasound Imaging and Deep Convolutional Neural Networks

    Get PDF
    Objective: To test automated in vivo estimation of active and passive skeletal muscle states using ultrasonic imaging. Background: Current technology (electromyography, dynamometry, shear wave imaging) provides no general, non-invasive method for online estimation of skeletal muscle states. Ultrasound (US) allows non-invasive imaging of muscle, yet current computational approaches have never achieved simultaneous extraction nor generalisation of independently varying, active and passive states. We use deep learning to investigate the generalizable content of 2D US muscle images. Method: US data synchronized with electromyography of the calf muscles, with measures of joint moment/angle were recorded from 32 healthy participants (7 female, ages: 27.5, 19-65). We extracted a region of interest of medial gastrocnemius and soleus using our prior developed accurate segmentation algorithm. From the segmented images, a deep convolutional neural network was trained to predict three absolute, driftfree, components of the neurobiomechanical state (activity, joint angle, joint moment) during experimentally designed, simultaneous, independent variation of passive (joint angle) and active (electromyography) inputs. Results: For all 32 held-out participants (16-fold cross-validation) the ankle joint angle, electromyography, and joint moment were estimated to accuracy 55±8%, 57±11%, and 46±9% respectively. Significance: With 2D US imaging, deep neural networks can encode in generalizable form, the activitylength-tension state relationship of these muscles. Observation only, low power, 2D US imaging can provide a new category of technology for non-invasive estimation of neural output, length and tension in skeletal muscle. This proof of principle has value for personalised muscle assessment in pain, injury, neurological conditions, neuropathies, myopathies and ageing

    The application of b-mode ultrasonography for analysis of human skeletal muscle

    Get PDF
    Skeletal muscles control the joints of the skeletal system and they allow human movement and interaction with the environment. They are vital for stability in balance, walking and running, and many other skilled motor tasks. To understand how muscles operate in general and specific situations there are a variety of tools at the disposal of research scientists and clinicians for analysing muscle function. Strain gauges for example allow the quantification of forces exerted during joint rotation. However, skeletal muscles are multilayer systems and often different muscles are responsible for the overall force generated during joint rotation. Therefore, strain gauges do not reveal the extent of the contribution of individual muscles during muscle function. The most widely-used and accepted muscle analysis tool is electromyography (EMG), which can measure the activation level of individual muscles by measuring the electrical potential propagating through muscle resulting from local activations of motor units. However, EMG does not linearly relate to any real physical forces, meaning that without prior knowledge of the force exertion on the level of the muscle, force cannot be estimated. EMG can measure superficial layers of muscle non-invasively by attaching surface electrodes (surface EMG) to the skin over the belly of the muscle. To measure the activity of individual muscle beneath the superficial muscle, a needle or thin-wire electrode must be inserted through the skin and into the muscle volume (intramuscular EMG), which is invasive and not practical in many situations. Furthermore, intramuscular EMG can only provide measurement of a very small volume (<1mm3) which can have varying amounts of active motor units. Ultrasonography is a powerful cost-effective non-invasive imaging technology which allows real-time observation of cross-sections of multiple layers of dynamic skeletal muscle. Recent advances in automated skeletal muscle ultrasound analysis techniques, and advances in image processing techniques make ultrasound a valuable line of investigation for analysis of dynamic skeletal muscle. This aim of this thesis is to study and develop advanced image analysis techniques applicable to the analysis of dynamic skeletal muscle. The broader aim is to understand the capacity/limits of ultrasound as a skeletal muscle analysis tool. The ideas presented within offer new approaches to modelling complex muscle architecture and function via ultrasound. Tools have also been developed here that will contribute to, and promote ultrasound skeletal muscle analysis as a new and emerging technology which may be used by clinicians and research scientists to develop our understanding of skeletal muscle function. The main findings of this thesis are that automated segmentation of architecturally simple and complex skeletal muscle groups is possible and accurate, and that information about joint angles and muscle activity/force can be automatically extracted directly from ultrasound images without the explicit knowledge of how to extract it. The techniques used offer new possibilities for non-invasive information extraction from complex muscle groups such as the muscles in the human posterior neck

    Diffusion-tensor MRI methods to study and evaluate muscle architecture

    Get PDF
    The thesis describes the development of various approaches for measuring muscle architectural parameters using Diffusion Tensor MR Imaging (DTI). It also illustrates how to apply them to study changes in muscle architecture after an injury prevention program.In Chapter 2, because manual segmentation of muscles is cumbersome, we validated a semi-automatic framework for estimating DTI indices in upper leg muscles. This method reduced segmentation time by a factor of three in a cross-sectional study design and can be used fully automatically in a longitudinal assessment of changes in DTI indices.Chapter 3 was a feasibility study measuring fiber orientation changes with DTI in calf muscles and sub-compartments of the Soleus and Tibialis Anterior during plantarflexion and dorsiflexion. Differences in fiber orientations corresponded to the known agonist-antagonist function of the muscles. This shows that DTI can be utilized to assess changes in muscle orientation due to posture or training.In Chapter 4, we compared DTI fiber tractography for Vastus Lateralis fiber architecture assessment with 3D ultrasonography (3D-US). We discovered that both methods have their advantages and disadvantages, with the agreement between the two techniques being moderate.Finally, in Chapter 5, we examined the effects of a hamstring injury prevention exercise on the muscle architectural parameters of basketball players. DTI was employed to quantify changes in fiber orientation and length using tractography and fiber orientation maps. It was observed that the Semitendinosus fascicle length increased after the Nordics exercise, while the Biceps Femoris long head fiber orientation decreased following the Divers intervention

    Automated Method for Tracking Human Muscle Architecture on Ultrasound Scans during Dynamic Tasks

    Get PDF
    Existing approaches for automated tracking of fascicle length (FL) and pennation angle (PA) rely on the presence of a single, user-defined fascicle (feature tracking) or on the presence of a specific intensity pattern (feature detection) across all the recorded ultrasound images. These prerequisites are seldom met during large dynamic muscle movements or for deeper muscles that are difficult to image. Deep-learning approaches are not affected by these issues, but their applicability is restricted by their need for large, manually analyzed training data sets. To address these limitations, the present study proposes a novel approach that tracks changes in FL and PA based on the distortion pattern within the fascicle band. The results indicated a satisfactory level of agreement between manual and automated measurements made with the proposed method. When compared against feature tracking and feature detection methods, the proposed method achieved the lowest average root mean squared error for FL and the second lowest for PA. The strength of the proposed approach is that the quantification process does not require a training data set and it can take place even when it is not possible to track a single fascicle or observe a specific intensity pattern on the ultrasound recording.UK-India Education and Research Initiative (UKIERI)Department of Science and Technology (DST), New DelhiPeer Reviewe
    corecore