47 research outputs found

    A combined machine learning and residual analysis approach for improved retrieval of shallow bathymetry from hyperspectral imagery and sparse ground truth data

    Get PDF
    Mapping shallow bathymetry by means of optical remote sensing has been a challenging task of growing interest in recent years. Particularly, many studies exploit earlier empirical models together with the latest multispectral satellite imagery (e.g., Sentinel 2, Landsat 8). However, in these studies, the accuracy of resulting bathymetry is (a) limited for deeper waters (>15 m) and/or (b) is being influenced by seafloor type albedo. This study explores further the capabilities of hyperspectral satellite imagery (Hyperion), which provides several spectral bands in the visible spectrum, along with existing reference bathymetry. Bathymetry predictors are created by applying the semi-empirical approach of band ratios on hyperspectral imagery. Then, these predictors are fed to machine learning regression algorithms for predicting bathymetry. Algorithm performance is being further compared to bathymetry predictions from multiple linear regression analysis. Following the initial predictions, the residual bathymetry values are interpolated by applying the Ordinary Kriging method. Then, the predicted bathymetry from all three algorithms along with their associated residual grids is used as predictors at a second processing stage. Validation results show that by using a second stage of processing, the root-mean-square error values of predicted bathymetry is being improved by ≈1 m even for deeper water (up to 25 m). It is suggested that this approach is suitable for (a) contributing wide-scale, high-resolution shallow bathymetry toward the goals of the Seabed 2030 program and (b) as a coarse resolution alternative to effort-consuming single-beam sonar or costly airborne bathymetric laser surveying

    Geo-Spatial Analysis in Hydrology

    Get PDF
    Geo-spatial analysis has become an essential component of hydrological studies to process and examine geo-spatial data such as hydrological variables (e.g., precipitation and discharge) and basin characteristics (e.g., DEM and land use land cover). The advancement of the data acquisition technique helps accumulate geo-spatial data with more extensive spatial coverage than traditional in-situ observations. The development of geo-spatial analytic methods is beneficial for the processing and analysis of multi-source data in a more efficient and reliable way for a variety of research and practical issues in hydrology. This book is a collection of the articles of a published Special Issue Geo-Spatial Analysis in Hydrology in the journal ISPRS International Journal of Geo-Information. The topics of the articles range from the improvement of geo-spatial analytic methods to the applications of geo-spatial analysis in emerging hydrological issues. The results of these articles show that traditional hydrological/hydraulic models coupled with geo-spatial techniques are a way to make streamflow simulations more efficient and reliable for flood-related decision making. Geo-spatial analysis based on more advanced methods and data is a reliable resolution to obtain high-resolution information for hydrological studies at fine spatial scale

    Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images

    Get PDF
    Topographic and bathymetric data are essential for accurate predictions of flooding in estuaries because water depth and elevation data are fundamental components of the shallow-water hydrodynamic equations used in models for storm surges and tides. Where lidar or in situ acoustic surveys are unavailable, recent efforts have centred on using satellite-derived bathymetry (SDB) and satellite-derived topography (SDT). This work is aimed at (1) determining the accuracy of SDT and (2) assessing the suitability of the SDT and SDB for extreme water level modelling of estuaries. The SDT was created by extracting the waterline as it tracks over the topography with changing tides. The method was applied to four different estuaries in Aotearoa / New Zealand: Whitianga, Maketū, Ōhiwa and Tauranga harbours. Results show that the waterline method provides similar topography to the lidar with a root-mean-square error equal to 0.2 m, and it is slightly improved when two correction methods are applied to the topography derivations: the removal of statistical bias (0.02 m improvement) and hydrodynamic modelling correction of waterline elevation (0.01 m improvement). The use of SDT in numerical simulations of surge levels was assessed for Tauranga Harbour in eight different simulation scenarios. Each scenario explored different ways of incorporating the SDT to replace the topographic data collected using non-satellite survey methods. In addition, one of these scenarios combined SDT (for intertidal zones) and SDB (for subtidal bathymetry), so only satellite information is used in surge modelling. The latter SDB is derived using the well-known ratio–log method. For Tauranga Harbour, using SDT and SDB in hydrodynamic models does not result in significant differences in predicting high water levels when compared with the scenario modelled using surveyed bathymetry.</p

    Cubesats Allow High Spatiotemporal Estimates of Satellite-Derived Bathymetry

    Get PDF
    High spatial and temporal resolution satellite remote sensing estimates are the silver bullet for monitoring of coastal marine areas globally. From 2000, when the first commercial satellite platforms appeared, offering high spatial resolution data, the mapping of coastal habitats and the extraction of bathymetric information have been possible at local scales. Since then, several platforms have offered such data, although not at high temporal resolution, making the selection of suitable images challenging, especially in areas with high cloud coverage. PlanetScope CubeSats appear to cover this gap by providing their relevant imagery. The current study is the first that examines the suitability of them for the calculation of the Satellite-derived Bathymetry. The availability of daily data allows the selection of the most qualitatively suitable images within the desired timeframe. The application of an empirical method of spaceborne bathymetry estimation provides promising results, with depth errors that fit to the requirements of the international Hydrographic Organization at the Category Zone of Confidence for the inclusion of these data in navigation maps. While this is a pilot study in a small area, more studies in areas with diverse water types are required for solid conclusions on the requirements and limitations of such approaches in coastal bathymetry estimations

    A Purely Spaceborne Open Source Approach for Regional Bathymetry Mapping

    Get PDF

    A Simple Cloud-Native Spectral Transformation Method to Disentangle Optically Shallow and Deep Waters in Sentinel-2 Images.

    Get PDF
    This study presents a novel method to identify optically deep water using purely spectral approaches. Optically deep waters, where the seabed is too deep for a bottom reflectance signal to be returned, is uninformative for seabed mapping. Furthermore, owing to the attenuation of light in the water column, submerged vegetation at deeper depths is easily confused with optically deep waters, thereby inducing misclassifications that reduce the accuracy of these seabed maps. While bathymetry data could mask out deeper areas, they are not always available or of sufficient spatial resolution for use. Without bathymetry data and based on the coastal aerosol blue green (1,2,3) bands of the Sentinel 2 imagery, this study investigates the use of band ratios and a false colour HSV transformation of both L1C and L2A images to separate optically deep and shallow waters across varying water quality over four tropical and temperate submerged sites: Tanzania, the Bahamas, the Caspian Sea (Kazakhstan) and the Wadden Sea (Denmark and Germany). Two supervised thresholds based on annotated reference data and an unsupervised Otsu threshold were applied. The band ratio group usually featured the best overall accuracies (OA), F1 scores and Matthews correlation coefficients, although the individual band combination might not perform consistently across different sites. Meanwhile, the saturation and hue band yielded close to best performance for the L1C and L2A images, featuring OA of up to 0.93 and 0.98, respectively, and a more consistent behaviour than the individual band ratios. Nonetheless, all these spectral methods are still susceptible to sunglint, the Sentinel 2 parallax effect, turbidity and water colour. Both supervised approaches performed similarly and were superior to the unsupervised Otsus method: the supervised methods featuring OA were usually over 0.70, while the unsupervised OA were usually under 0.80. In the absence of bathymetry data, this method could effectively remove optically deep water pixels in Sentinel 2 imagery and reduce the issue of dark pixel misclassification, thereby improving the benthic mapping of optically shallow waters and their seascapes

    Deteksi Batimetri Perairan Dangkal di Pulau Menjangan, Provinsi Bali Menggunakan Citra Landsat

    Get PDF
    Remote sensing-based research in Indonesia using satellite imagery frequently faces the challenge of cloud coverage due to the tropical country. One spatial data that can be extracted from satellite imagery is bathymetry. However, cloud-covered water bathymetric extraction still needs to be examined. This study aims to understand the ability of Landsat 7 ETM+ acquired on 29 July 2013, and Landsat 8, acquired on 24 July 2020, as the representative of non-cloudy image compared to Landsat 8, acquired on 9 August 2020, as the cloudy image. Stumpf algorithm was applied, including a statistical approach of linear regression analysis with in-situ data measurement from Single Beam Echo-Sounder (SBES) to derive the absolute bathymetric map with several classes of depth ranging from 0 – 2 m up to 10 m. To assess the accuracy, RMSE and confusion matrix was used. The result shows that Landsat 7 ETM+ yields the highest R2 with 0,52, while the lowest total RMSE (8,167 m) and highest overall accuracy of about 69% from the confusion matrix was achieved by the cloudy image of Landsat 8. Nevertheless, the highest absolute depth value yield by Landsat 8 non-cloudy image with 16,1 m. This research confirms that the highest R2 value does not always produce the best model, but it is still promised to be used. Furthermore, the quality of the imagery based on its percentage of cloud coverage is affecting the resulted model

    Mind the gap in data poor Natura 2000 sites and how to tackle them using Earth Observation and scientific diving surveys

    Get PDF
    Charismatic species drives decisions for the conservation of marine areas in the view of the coverage of the Natura 2000 sites in the European Union and other forms of Marine Protected Areas in Europe. However, when used solely, critical seascapes and habitats are systematically ignored and practically it can take decades to fulfill baseline needs on habitats distributions, habitats conservation status and species distributions and biodiversity assessments. Luckily, in the last decade, the use of new technologies in conjunction with scientific diving and budget friendly hydroacoustic tools and applications, has allowed to fill the gap in knowledge in such situations and seascapes. The current work demonstrates the use of Earth Observation and Science Dive to fill the gap of knowledge in a newly established Natura 2000 area in Crete, Greece, East Mediterranean, paving the road for replicable approaches in similar situations

    A comparison of Landsat 8, RapidEye and Pleiades products for improving empirical predictions of satellite-derived bathymetry

    Get PDF
    Satellite derived bathymetry (SDB) enables rapid mapping of large coastal areas through measurement of optical penetration of the water column. The resolution of bathymetric mapping and achievable horizontal and vertical accuracies vary but generally, all SDB outputs are constrained by sensor type, water quality and other environmental conditions. Efforts to improve accuracy include physics-based methods (similar to radiative transfer models e.g. for atmospheric/vegetation studies) or detailed in-situ sampling of the seabed and water column, but the spatial component of SDB measurements is often under-utilised in SDB workflows despite promising results suggesting potential to improve accuracy significantly. In this study, a selection of satellite datasets (Landsat 8, RapidEye and Pleiades) at different spatial and spectral resolutions were tested using a log ratio transform to derive bathymetry in an Atlantic coastal embayment. A series of non-spatial and spatial linear analyses were then conducted and their influence on SDB prediction accuracy was assessed in addition to the significance of each model’s parameters. Landsat 8 (30m pixel size) performed relatively weak with the non-spatial model, but showed the best results with the spatial model. However, the highest spatial resolution imagery used – Pleiades (2m pixel size) showed good results across both non-spatial and spatial models which suggests a suitability for SDB prediction at a higher spatial resolution than the others. In all cases, the spatial models were able to constrain the prediction differences at increased water depths
    corecore