3,916 research outputs found

    Hybrid neural network based models for evapotranspiration prediction over limited weather parameters

    Get PDF
    Evapotranspiration can be used to estimate the amount of water required by agriculture projects and green spaces, playing a key role in water management policies that combat the hydrological drought, which assumes a structural character in many countries. In this context, this work presents a study on reference evapotranspiration (ETo) estimation models, having as input a limited set of meteorological parameters, namely: temperature, humidity, and wind. Since solar radiation (SR) is an important parameter in the determination of ETo, SR estimation models are also developed. These ETo and SR estimation models compare the use of Artificial Neural Networks (ANN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN), and hybrid neural network models such as LSTM-ANN, RNN-ANN, and GRU-ANN. Two main approaches were taken for ET(o )estimation: (i) directly use those algorithms to estimate ETo, and (ii) estimate solar radiation first and then use that estimation together with other meteorological parameters in a method that predicts ETo. For the latter case, two variants were implemented: the use of the estimated solar radiation as (ii.1) a feature of the neural network regressors, and (ii.2) the use of the Penman-Monteith method (a.k.a. FAO-56PM method, adopted by the United Nations Food and Agriculture Organization) to compute ETo, which has solar radiation as one of the input parameters. Using experimental data collected from a weather station (WS) located in Vale do Lobo (Portugal), the later approach achieved the best result with a coefficient of determination (R-2) of 0.977. The developed model was then applied to data from eleven stations located in Colorado (USA), with very distinct climatic conditions, showing similar results to the ones for which the models were initially designed ((R2) > 0.95), proving a good generalization. As a final notice, the reduced-set features were carefully selected so that they are compatible with free online weather forecast services.info:eu-repo/semantics/publishedVersio

    Machine learning models to predict daily actual evapotranspiration of citrus orchards under regulated deficit irrigation

    Get PDF
    Precise estimations of actual evapotranspiration (ETa) are essential for various environmental issues, including those related to agricultural ecosystem sustainability and water management. Indeed, the increasing demands of agricultural production, coupled with increasingly frequent drought events in many parts of the world, necessitate a more careful evaluation of crop water requirements. Artificial Intelligence-based models represent a promising alternative to the most common measurement techniques, e.g. using expensive Eddy Covariance (EC) towers. In this context, the main challenges are choosing the best possible model and selecting the most representative features. The objective of this research is to evaluate two different machine learning algorithms, namely Multi-Layer Perceptron (MLP) and Random Forest (RF), to predict daily actual evapotranspiration (ETa) in a citrus orchard typical of the Mediterranean ecosystem using different feature combinations. With many features available coming from various infield sensors, a thorough analysis was performed to measure feature importance, scatter matrix observations, and Pearson's correlation coefficient calculation, which resulted in the selection of 12 promising feature combinations. The models were calibrated under regulated deficit irrigation (RDI) conditions to estimate ETa and save irrigation water. On average up to 38.5% water savings were obtained, compared to full irrigation. Moreover, among the different input variables adopted, the soil water content (SWC) feature appears to have a prominent role in the prediction of ETa. Indeed, the presented results show that by choosing the appropriate input features, the accuracy of the proposed machine learning models remains acceptable even when the number of features is reduced to only 4. The best performance was achieved by the Random Forest method, with seven input features, obtaining a root mean square error (RMSE) and a coefficient of determination (R2) of 0.39 mm/day and 0.84, respectively. Finally, the results show that the joint use of SWC, weather and satellite data significantly improves the performance of evapotranspiration forecasts compared to models using only meteorological variables

    Modeling and analysis of actual evapotranspiration using data driven and wavelet techniques

    Get PDF
    Large-scale mining practices have disturbed many natural watersheds in northern Alberta, Canada. To restore disturbed landscapes and ecosystems’ functions, reconstruction strategies have been adopted with the aim of establishing sustainable reclaimed lands. The success of the reconstruction process depends on the design of reconstruction strategies, which can be optimized by improving the understanding of the controlling hydrological processes in the reconstructed watersheds. Evapotranspiration is one of the important components of the hydrological cycle; its estimation and analysis are crucial for better assessment of the reconstructed landscape hydrology, and for more efficient design. The complexity of the evapotranspiration process and its variability in time and space has imposed some limitations on previously developed evapotranspiration estimation models. The vast majority of the available models estimate the rate of potential evapotranspiration, which occurs under unlimited water supply condition. However, the rate of actual evapotranspiration (AET) depends on the available soil moisture, which makes its physical modeling more complicated than the potential evapotranspiration. The main objective of this study is to estimate and analyze the AET process in a reconstructed landscape. Data driven techniques can model the process without having a complete understanding of its physics. In this study, three data driven models; genetic programming (GP), artificial neural networks (ANNs), and multilinear regression (MLR), were developed and compared for estimating the hourly eddy covariance (EC)-measured AET using meteorological variables. The AET was modeled as a function of five meteorological variables: net radiation (Rn), ground temperature (Tg), air temperature (Ta), relative humidity (RH), and wind speed (Ws) in a reconstructed landscape located in northern Alberta, Canada. Several ANN models were evaluated using two training algorithms of Levenberg-Marquardt and Bayesian regularization. The GP technique was employed to generate mathematical equations correlating AET to the five meteorological variables. Furthermore, the available data were statistically analyzed to obtain MLR models and to identify the meteorological variables that have significant effect on the evapotranspiration process. The utility of the investigated data driven models was also compared with that of HYDRUS-1D model, which is a physically based model that makes use of conventional Penman-Monteith (PM) method for the prediction of AET. HYDRUS-1D model was examined for estimating AET using meteorological variables, leaf area index, and soil moisture information. Furthermore, Wavelet analysis (WA), as a multiresolution signal processing tool, was examined to improve the understanding of the available time series temporal variations, through identifying the significant cyclic features, and to explore the possible correlation between AET and the meteorological signals. WA was used with the purpose of input determination of AET models, a priori. The results of this study indicated that all three proposed data driven models were able to approximate the AET reasonably well; however, GP and MLR models had better generalization ability than the ANN model. GP models demonstrated that the complex process of hourly AET can be efficiently modeled as simple semi-linear functions of few meteorological variables. The results of HYDRUS-1D model exhibited that a physically based model, such as HYDRUS-1D, might perform on par or even inferior to the data driven models in terms of the overall prediction accuracy. The developed equation-based models; GP and MLR, revealed the larger contribution of net radiation and ground temperature, compared to other variables, to the estimation of AET. It was also found that the interaction effects of meteorological variables are important for the AET modeling. The results of wavelet analysis demonstrated the presence of both small-scale (2 to 8 hours) and larger-scale (e.g. diurnal) cyclic features in most of the investigated time series. Larger-scale cyclic features were found to be the dominant source of temporal variations in the AET and most of the meteorological variables. The results of cross wavelet analysis indicated that the cause and effect relationship between AET and the meteorological variables might vary based on the time-scale of variation under consideration. At small time-scales, significant linear correlations were observed between AET and Rn, RH, and Ws time series, while at larger time-scales significant linear correlations were observed between AET and Rn, RH, Tg, and Ta time series

    Smart models to improve agrometeorological estimations and predictions

    Get PDF
    La población mundial, en continuo crecimiento, alcanzará de forma estimada los 9,7 mil millones de habitantes en el 2050. Este incremento, combinado con el aumento en los estándares de vida y la situación de emergencia climática (aumento de la temperatura, intensificación del ciclo del agua, etc.) nos enfrentan al enorme desafío de gestionar de forma sostenible los cada vez más escasos recursos disponibles. El sector agrícola tiene que afrontar retos tan importantes como la mejora en la gestión de los recursos naturales, la reducción de la degradación medioambiental o la seguridad alimentaria y nutricional. Todo ello condicionado por la escasez de agua y las condiciones de aridez: factores limitantes en la producción de cultivos. Para garantizar una producción agrícola sostenible bajo estas condiciones, es necesario que todas las decisiones que se tomen estén basadas en el conocimiento, la innovación y la digitalización de la agricultura de forma que se garantice la resiliencia de los agroecosistemas, especialmente en entornos áridos, semi-áridos y secos sub-húmedos en los que el déficit de agua es estructural. Por todo esto, el presente trabajo se centra en la mejora de la precisión de los actuales modelos agrometeorológicos, aplicando técnicas de inteligencia artificial. Estos modelos pueden proporcionar estimaciones y predicciones precisas de variables clave como la precipitación, la radiación solar y la evapotranspiración de referencia. A partir de ellas, es posible favorecer estrategias agrícolas más sostenibles, gracias a la posibilidad de reducir el consumo de agua y energía, por ejemplo. Además, se han reducido el número de mediciones requeridas como parámetros de entrada para estos modelos, haciéndolos más accesibles y aplicables en áreas rurales y países en desarrollo que no pueden permitirse el alto costo de la instalación, calibración y mantenimiento de estaciones meteorológicas automáticas completas. Este enfoque puede ayudar a proporcionar información valiosa a los técnicos, agricultores, gestores y responsables políticos de la planificación hídrica y agraria en zonas clave. Esta tesis doctoral ha desarrollado y validado nuevas metodologías basadas en inteligencia artificial que han ser vido para mejorar la precision de variables cruciales en al ámbito agrometeorológico: precipitación, radiación solar y evapotranspiración de referencia. En particular, se han modelado sistemas de predicción y rellenado de huecos de precipitación a diferentes escalas utilizando redes neuronales. También se han desarrollado modelos de estimación de radiación solar utilizando exclusivamente parámetros térmicos y validados en zonas con características climáticas similares a lugar de entrenamiento, sin necesidad de estar geográficamente en la misma región o país. Analógamente, se han desarrollado modelos de estimación y predicción de evapotranspiración de referencia a nivel local y regional utilizando también solamente datos de temperatura para todo el proceso: regionalización, entrenamiento y validación. Y finalmente, se ha creado una librería de Python de código abierto a nivel internacional (AgroML) que facilita el proceso de desarrollo y aplicación de modelos de inteligencia artificial, no solo enfocadas al sector agrometeorológico, sino también a cualquier modelo supervisado que mejore la toma de decisiones en otras áreas de interés.The world population, which is constantly growing, is estimated to reach 9.7 billion people in 2050. This increase, combined with the rise in living standards and the climate emergency situation (increase in temperature, intensification of the water cycle, etc.), presents us with the enormous challenge of managing increasingly scarce resources in a sustainable way. The agricultural sector must face important challenges such as improving natural resource management, reducing environmental degradation, and ensuring food and nutritional security. All of this is conditioned by water scarcity and aridity, limiting factors in crop production. To guarantee sustainable agricultural production under these conditions, it is necessary to based all the decision made on knowledge, innovation, and the digitization of agriculture to ensure the resilience of agroecosystems, especially in arid, semi-arid, and sub-humid dry environments where water deficit is structural. Therefore, this work focuses on improving the precision of current agrometeorological models by applying artificial intelligence techniques. These models can provide accurate estimates and predictions of key variables such as precipitation, solar radiation, and reference evapotranspiration. This way, it is possible to promote more sustainable agricultural strategies by reducing water and energy consumption, for example. In addition, the number of measurements required as input parameters for these models has been reduced, making them more accessible and applicable in rural areas and developing countries that cannot afford the high cost of installing, calibrating, and maintaining complete automatic weather stations. This approach can help provide valuable information to technicians, farmers, managers, and policy makers in key wáter and agricultural planning areas. This doctoral thesis has developed and validated new methodologies based on artificial intelligence that have been used to improve the precision of crucial variables in the agrometeorological field: precipitation, solar radiation, and reference evapotranspiration. Specifically, prediction systems and gap-filling models for precipitation at different scales have been modeled using neural networks. Models for estimating solar radiation using only thermal parameters have also been developed and validated in areas with similar climatic characteristics to the training location, without the need to be geographically in the same region or country. Similarly, models for estimating and predicting reference evapotranspiration at the local and regional level have been developed using only temperature data for the entire process: regionalization, training, and validation. Finally, an internationally open-source Python library (AgroML) has been created to facilitate the development and application of artificial intelligence models, not only focused on the agrometeorological sector but also on any supervised model that improves decision-making in other areas of interest

    Modeling of Reference Crop Evapotranspiration in Wet and Dry Climates Using Data-Mining Methods and Empirical Equations

    Get PDF
    In the present study, performance of data-mining methods in modeling and estimating reference crop evapotranspiration (ETo) is investigated. To this end, different machine learning, including Artificial Neural Network (ANN), M5 tree, Multivariate Adaptive Regression Splines (MARS), Least Square Support Vector Machine (LS-SVM), and Random Forest (RF) are employed by considering different criteria including impacts of climate (eight synoptic stations in humid and dry climates), accuracy, uncertainty and computation time. Furthermore, to show the application of data-mining methods, their results are compared with some empirical equations, that indicated the superiority of data- mining methods. In the humid climate, it was demonstrated that M5 tree model is the best if only accuracy criterion is considered, and MARS is a better data-mining method by considering accuracy, uncertainty, and computation time criteria. While in the dry climate, the ANN has better results by considering accuracy and all other criteria. In the final step, for a comprehensive investigation of data-mining ability in ETo modeling, all data in humid and dry climates are combined. Results showed the highest accuracy by MARS and ANN models

    Estimation of Surface Soil Moisture in Irrigated Lands by Assimilation of Landsat Vegetation Indices, Surface Energy Balance Products, and Relevance Vector Machines

    Get PDF
    Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices) has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and energy balance products derived from satellite (Landsat) imagery and weather data as identified in scientific literature. This methodology employs a statistical learning machine called a Relevance Vector Machine (RVM) to identify and relate the potential predictors to soil moisture by means of stratified cross-validation and forward variable selection. Surface soil moisture measurements from irrigated agricultural fields in Central Utah in the 2012 irrigation season were used, along with weather data, Landsat vegetation indices, and energy balance products. The methodology, data collection, processing, and estimation accuracy are presented and discussed. © 2016 by the authors

    Using Sentinel-2 and canopy height models to derive a landscape-level biomass map covering multiple vegetation types

    Get PDF
    Vegetation biomass is a globally important climate-relevant terrestrial carbon pool and also drives local hydrological systems via evapotranspiration. Vegetation biomass of individual vegetation types has been successfully estimated from active and passive remote sensing data. However, for many tasks, landscape-level biomass maps across several vegetation types are more suitable than biomass maps of individual vegetation types. For example, the validation of ecohydrological models and carbon budgeting typically requires spatially continuous biomass estimates, independent from vegetation type. Studies that derive biomass estimates across multiple vegetation or land-cover types to merge them into a single landscape-level biomass map are still scarce, and corresponding workflows must be developed. Here, we present a workflow to derive biomass estimates on landscape-level for a large watershed in central Chile. Our workflow has three steps: First, we combine field plotbased biomass estimates with spectral and structural information collected from Sentinel-2, TanDEM-X and airborne LiDAR data to map grassland, shrubland, native forests and pine plantation biomass using random forest regressions with an automatic feature selection. Second, we predict all models to the entire landscape. Third, we derive a land-cover map including the four considered vegetation types. We then use this land-cover map to assign the correct vegetation type-specific biomass estimate to each pixel according to one of the four considered vegetation types. Using a single repeatable workflow, we obtained biomass predictions comparable to earlier studies focusing on only one of the four vegetation types (Spearman correlation between 0.80 and 0.84; normalized-RMSE below 16 % for all vegetation types). For all woody vegetation types, height metrics were amongst the selected predictors, while for grasslands, only Sentinel-2 bands were selected. The land-cover was also mapped with high accuracy (OA = 83.1 %). The final landscape-level biomass map spatially agrees well with the known biomass distribution patterns in the watershed. Progressing from vegetation-type specific maps towards landscape-level biomass maps is an essential step towards integrating remote-sensing based biomass estimates into models for water and carbon management

    AgroML: An Open-Source Repository to Forecast Reference Evapotranspiration in Different Geo-Climatic Conditions Using Machine Learning and Transformer-Based Models

    Get PDF
    Accurately forecasting reference evapotranspiration (ET0) values is crucial to improve crop irrigation scheduling, allowing anticipated planning decisions and optimized water resource management and agricultural production. In this work, a recent state-of-the-art architecture has been adapted and deployed for multivariate input time series forecasting (transformers) using past values of ET0 and temperature-based parameters (28 input configurations) to forecast daily ET0 up to a week (1 to 7 days). Additionally, it has been compared to standard machine learning models such as multilayer perceptron (MLP), random forest (RF), support vector machine (SVM), extreme learning machine (ELM), convolutional neural network (CNN), long short-term memory (LSTM), and two baselines (historical monthly mean value and a moving average of the previous seven days) in five locations with different geo-climatic characteristics in the Andalusian region, Southern Spain. In general, machine learning models significantly outperformed the baselines. Furthermore, the accuracy dramatically dropped when forecasting ET0 for any horizon longer than three days. SVM, ELM, and RF using configurations I, III, IV, and IX outperformed, on average, the rest of the configurations in most cases. The best NSE values ranged from 0.934 in Córdoba to 0.869 in Tabernas, using SVM. The best RMSE, on average, ranged from 0.704 mm/day for Málaga to 0.883 mm/day for Conil using RF. In terms of MBE, most models and cases performed very accurately, with a total average performance of 0.011 mm/day. We found a relationship in performance regarding the aridity index and the distance to the sea. The higher the aridity index at inland locations, the better results were obtained in forecasts. On the other hand, for coastal sites, the higher the aridity index, the higher the error. Due to the good performance and the availability as an open-source repository of these models, they can be used to accurately forecast ET0 in different geo-climatic conditions, helping to increase efficiency in tasks of great agronomic importance, especially in areas with low rainfall or where water resources are limiting for the development of crops
    corecore