89 research outputs found

    Recovering Structured Probability Matrices

    Get PDF
    We consider the problem of accurately recovering a matrix B of size M by M , which represents a probability distribution over M2 outcomes, given access to an observed matrix of "counts" generated by taking independent samples from the distribution B. How can structural properties of the underlying matrix B be leveraged to yield computationally efficient and information theoretically optimal reconstruction algorithms? When can accurate reconstruction be accomplished in the sparse data regime? This basic problem lies at the core of a number of questions that are currently being considered by different communities, including building recommendation systems and collaborative filtering in the sparse data regime, community detection in sparse random graphs, learning structured models such as topic models or hidden Markov models, and the efforts from the natural language processing community to compute "word embeddings". Our results apply to the setting where B has a low rank structure. For this setting, we propose an efficient algorithm that accurately recovers the underlying M by M matrix using Theta(M) samples. This result easily translates to Theta(M) sample algorithms for learning topic models and learning hidden Markov Models. These linear sample complexities are optimal, up to constant factors, in an extremely strong sense: even testing basic properties of the underlying matrix (such as whether it has rank 1 or 2) requires Omega(M) samples. We provide an even stronger lower bound where distinguishing whether a sequence of observations were drawn from the uniform distribution over M observations versus being generated by an HMM with two hidden states requires Omega(M) observations. This precludes sublinear-sample hypothesis tests for basic properties, such as identity or uniformity, as well as sublinear sample estimators for quantities such as the entropy rate of HMMs

    A Latent Source Model for Nonparametric Time Series Classification

    Full text link
    For classifying time series, a nearest-neighbor approach is widely used in practice with performance often competitive with or better than more elaborate methods such as neural networks, decision trees, and support vector machines. We develop theoretical justification for the effectiveness of nearest-neighbor-like classification of time series. Our guiding hypothesis is that in many applications, such as forecasting which topics will become trends on Twitter, there aren't actually that many prototypical time series to begin with, relative to the number of time series we have access to, e.g., topics become trends on Twitter only in a few distinct manners whereas we can collect massive amounts of Twitter data. To operationalize this hypothesis, we propose a latent source model for time series, which naturally leads to a "weighted majority voting" classification rule that can be approximated by a nearest-neighbor classifier. We establish nonasymptotic performance guarantees of both weighted majority voting and nearest-neighbor classification under our model accounting for how much of the time series we observe and the model complexity. Experimental results on synthetic data show weighted majority voting achieving the same misclassification rate as nearest-neighbor classification while observing less of the time series. We then use weighted majority to forecast which news topics on Twitter become trends, where we are able to detect such "trending topics" in advance of Twitter 79% of the time, with a mean early advantage of 1 hour and 26 minutes, a true positive rate of 95%, and a false positive rate of 4%.Comment: Advances in Neural Information Processing Systems (NIPS 2013
    • …
    corecore