549 research outputs found

    The use of Unmanned Aerial Vehicle based photogrammetric point cloud data for winter wheat intra-field variable retrieval and yield estimation in Southwestern Ontario

    Get PDF
    Precision agriculture uses high spatial and temporal resolution soil and crop information to control the crop intra-field variability to achieve optimal economic benefit and environmental resources sustainable development. As a new imagery collection platform between airborne and ground measurements, Unmanned Aerial Vehicle (UAV) is used to collect high spatial resolution images at a user selected period for precision agriculture. Most studies extract crop parameters from the UAV-based orthomosaic imagery using spectral methods derived from the satellite and airborne based remote sensing. The new dataset, photogrammetric point cloud data (PCD), generated from the Structure from Motion (SfM) methods using the UAV-based images contains the feature’s structural information, which has not been fully utilized to extract crop’s biophysical information. This thesis explores the potential for the applications of the UAV-based photogrammetric PCD in crop biophysical variable retrieval and in final biomass and yield estimation. First, a new moving cuboid filter is applied to the voxel of UAV-based photogrammetric PCD of winter wheat to eliminate noise points, and the crop height is calculated from the highest and lowest points in each voxel. The results show that the winter wheat height can be estimated from the UAV-based photogrammetric PCD directly with high accuracy. Secondly, a new Simulated Observation of Point Cloud (SOPC) method was designed to obtain the 3D spatial distribution of vegetation and bare ground points and calculate the gap fraction and effective leaf area index (LAIe). It reveals that the ground-based crop biophysical methods are possible to be adopted by the PCD to retrieve LAIe without ground measurements. Finally, the SOPC method derived LAIe maps were applied to the Simple Algorithm for Yield estimation (SAFY) to generate the sub-field biomass and yield maps. The pixel-based biomass and yield maps were generated in this study revealed clearly the intra-field yield variation. This framework using the UAV-based SOPC-LAIe maps and SAFY model could be a simple and low-cost alternative for final yield estimation at the sub-field scale. The results of this thesis show that the UAV-based photogrammetric PCD is an alternative source of data in crop monitoring for precision agriculture

    Estimation of cotton canopy parameters based on unmanned aerial vehicle (UAV) oblique photography

    Get PDF
    Background: The technology of cotton defoliation is essential for mechanical cotton harvesting. Agricultural unmanned aerial vehicle (UAV) spraying has the advantages of low cost, high efficiency and no mechanical damage to cotton and has been favored and widely used by cotton planters in China. However, there are also some problems of low cotton defoliation rates and high impurity rates caused by unclear spraying amounts of cotton defoliants. The chemical rate recommendation and application should be based upon crop canopy volume rather than on land area. Plant height and leaf area index (LAI) is directly connected to plant canopy structure. Accurate dynamic monitoring of plant height and LAI provides important information for evaluating cotton growth and production. The traditional method to obtain plant height and LAI was s a time-consuming and labor-intensive task. It is very difficult and unrealistic to use the traditional measurement method to make the temporal and spatial variation map of plant height and LAI of large cotton fields. With the application of UAV in agriculture, remote sensing by UAV is currently regarded as an effective technology for monitoring and estimating plant height and LAI. Results: In this paper, we used UAV RGB photos to build dense point clouds to estimate cotton plant height and LAI following cotton defoliant spraying. The results indicate that the proposed method was able to dynamically monitor the changes in the LAI of cotton at different times. At 3 days after defoliant spraying, the correlation between the plant height estimated based on the constructed dense point cloud and the measured plant height was strong, with R2 and RMSE values of 0.962 and 0.913, respectively. At 10 days after defoliant spraying, the correlation became weaker over time, with R2 and RMSE values of 0.018 and 0.027, respectively. Comparing the actual manually measured LAI with the estimated LAI based on the dense point cloud, the R2 and RMSE were 0.872 and 0.814 and 0.132 and 0.173 at 3 and 10 days after defoliant spraying, respectively. Conclusions: Dense point cloud construction based on UAV remote sensing is a potential alternative to plant height and LAI estimation. The accuracy of LAI estimation can be improved by considering both plant height and planting density

    UAV Oblique Imagery with an Adaptive Micro-Terrain Model for Estimation of Leaf Area Index and Height of Maize Canopy from 3D Point Clouds

    Get PDF
    Leaf area index (LAI) and height are two critical measures of maize crops that are used in ecophysiological and morphological studies for growth evaluation, health assessment, and yield prediction. However, mapping spatial and temporal variability of LAI in fields using handheld tools and traditional techniques is a tedious and costly pointwise operation that provides information only within limited areas. The objective of this study was to evaluate the reliability of mapping LAI and height of maize canopy from 3D point clouds generated from UAV oblique imagery with the adaptive micro-terrain model. The experiment was carried out in a field planted with three cultivars having different canopy shapes and four replicates covering a total area of 48 × 36 m. RGB images in nadir and oblique view were acquired from the maize field at six different time slots during the growing season. Images were processed by Agisoft Metashape to generate 3D point clouds using the structure from motion method and were later processed by MATLAB to obtain clean canopy structure, including height and density. The LAI was estimated by a multivariate linear regression model using crop canopy descriptors derived from the 3D point cloud, which account for height and leaf density distribution along the canopy height. A simulation analysis based on the Sine function effectively demonstrated the micro-terrain model from point clouds. For the ground truth data, a randomized block design with 24 sample areas was used to manually measure LAI, height, N-pen data, and yield during the growing season. It was found that canopy height data from the 3D point clouds has a relatively strong correlation (R2 = 0.89, 0.86, 0.78) with the manual measurement for three cultivars with CH90 . The proposed methodology allows a cost-effective high-resolution mapping of in-field LAI index extraction through UAV 3D data to be used as an alternative to the conventional LAI assessments even in inaccessible regions

    Assessing Within-Field Variation in Alfalfa Leaf Area Index Using UAV Visible Vegetation Indices

    Get PDF
    This study examines the use of leaf area index (LAI) to inform variable-rate irrigation (VRI) for irrigated alfalfa (Medicago sativa). LAI is useful for predicting zone-specific evapotranspiration (ETc). One approach toward estimating LAI is to utilize the relationship between LAI and visible vegetation indices (VVIs) using unmanned aerial vehicle (UAV) imagery. This research has three objectives: (1) to measure and describe the within-field variation in LAI and canopy height for an irrigated alfalfa field, (2) to evaluate the relationships between the alfalfa LAI and various VVIs with and without field average canopy height, and (3) to use UAV images and field average canopy height to describe the within-field variation in LAI and the potential application to VRI. The study was conducted in 2021–2022 in Rexburg, Idaho. Over the course of the study, the measured LAI varied from 0.23 m2 m−2 to 11.28 m2 m−2 and canopy height varied from 6 cm to 65 cm. There was strong spatial clustering in the measured LAI but the spatial patterns were dynamic between dates. Among eleven VVIs evaluated, the four that combined green and red wavelengths but excluded blue wavelengths showed the most promise. For all VVIs, adding average canopy height to multiple linear regression improved LAI prediction. The regression model using the modified green–red vegetation index (MGRVI) and canopy height (R2 = 0.93) was applied to describe the spatial variation in the LAI among VRI zones. There were significant (p \u3c 0.05) but not practical differences

    Intra-field Canopy Nitrogen Retrieval from Unmanned Aerial Vehicle Imagery for Wheat and Corn Crops in Ontario, Canada

    Get PDF
    The optimization of crop nitrogen fertilization to accurately predict and match the nitrogen (N) supply to the crop N demand is the subject of intense research due to the environmental and economic impact of N fertilization. Excess N could seep into the water supplies around the field and cause unnecessary spending by farmers. Understanding the detailed spatial information about a crop status is known as a farming management technique called precision agriculture, which allows farmers to maximize their yield and profit while reducing the inputs of fertilizers, pesticides, water, and insecticides. The goal of this study is to document and test the applicability and feasibility of using Unmanned Aerial Vehicle (UAV) to predict nitrogen weight of wheat and corn fields in south-west Ontario. This is investigated using various statistical modelling techniques to achieve the best accuracy. Machine learning techniques such as Random Forests and Support Vector Regression are used, which provide more robust models than traditional linear regression models. The results demonstrate that most spectral indices have a non-linear relationship with canopy nitrogen weight and show high degree of multicollinearity among the variables. In this thesis, the final nitrogen prediction maps of wheat and corn fields using UAV images and the derived models are provided

    High-throughput phenotyping of plant leaf morphological, physiological, and biochemical traits on multiple scales using optical sensing

    Get PDF
    Acquisition of plant phenotypic information facilitates plant breeding, sheds light on gene action, and can be applied to optimize the quality of agricultural and forestry products. Because leaves often show the fastest responses to external environmental stimuli, leaf phenotypic traits are indicators of plant growth, health, and stress levels. Combination of new imaging sensors, image processing, and data analytics permits measurement over the full life span of plants at high temporal resolution and at several organizational levels from organs to individual plants to field populations of plants. We review the optical sensors and associated data analytics used for measuring morphological, physiological, and biochemical traits of plant leaves on multiple scales. We summarize the characteristics, advantages and limitations of optical sensing and data-processing methods applied in various plant phenotyping scenarios. Finally, we discuss the future prospects of plant leaf phenotyping research. This review aims to help researchers choose appropriate optical sensors and data processing methods to acquire plant leaf phenotypes rapidly, accurately, and cost-effectively

    Intra-field Nitrogen Estimation for Wheat and Corn using Unmanned Aerial Vehicle-based and Satellite Multispectral Imagery, Plant Biophysical Variables, Field Properties, and Machine Learning Methods

    Get PDF
    Management of nitrogen (N) fertilizers is an important agricultural practice and field of research to increase productivity, minimize environmental impacts and the cost of production. To apply N fertilizer at the right rate, time, and place depends on the crop type, desired yield, and field conditions. The objective of this study is to use Unmanned Aerial Vehicle (UAV) multispectral imagery, PlanetScope satellite imagery, vegetation indices (VI), crop height, leaf area index (LAI), field topographic metrics, and soil properties to predict canopy nitrogen weight (g/m2) of corn and wheat fields in southwestern Ontario, Canada. Random Forests (RF) and Support Vector Regression (SVR) machine learning models were tested with combinations of variable datasets and evaluated for accuracy of canopy nitrogen weight prediction. The results demonstrate that UAV and satellite-based prediction models including spectral variables, crop biophysical parameters, and field conditions can provide accurate and useful information for fertilizer management

    High-throughput estimation of crop traits: A review of ground and aerial phenotyping platforms

    Get PDF
    Crop yields need to be improved in a sustainable manner to meet the expected worldwide increase in population over the coming decades as well as the effects of anticipated climate change. Recently, genomics-assisted breeding has become a popular approach to food security; in this regard, the crop breeding community must better link the relationships between the phenotype and the genotype. While high-throughput genotyping is feasible at a low cost, highthroughput crop phenotyping methods and data analytical capacities need to be improved. High-throughput phenotyping offers a powerful way to assess particular phenotypes in large-scale experiments, using high-tech sensors, advanced robotics, and imageprocessing systems to monitor and quantify plants in breeding nurseries and field experiments at multiple scales. In addition, new bioinformatics platforms are able to embrace large-scale, multidimensional phenotypic datasets. Through the combined analysis of phenotyping and genotyping data, environmental responses and gene functions can now be dissected at unprecedented resolution. This will aid in finding solutions to currently limited and incremental improvements in crop yields

    Crop Disease Detection Using Remote Sensing Image Analysis

    Get PDF
    Pest and crop disease threats are often estimated by complex changes in crops and the applied agricultural practices that result mainly from the increasing food demand and climate change at global level. In an attempt to explore high-end and sustainable solutions for both pest and crop disease management, remote sensing technologies have been employed, taking advantages of possible changes deriving from relative alterations in the metabolic activity of infected crops which in turn are highly associated to crop spectral reflectance properties. Recent developments applied to high resolution data acquired with remote sensing tools, offer an additional tool which is the opportunity of mapping the infected field areas in the form of patchy land areas or those areas that are susceptible to diseases. This makes easier the discrimination between healthy and diseased crops, providing an additional tool to crop monitoring. The current book brings together recent research work comprising of innovative applications that involve novel remote sensing approaches and their applications oriented to crop disease detection. The book provides an in-depth view of the developments in remote sensing and explores its potential to assess health status in crops

    Remote Sensing in Agriculture: State-of-the-Art

    Get PDF
    The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue
    corecore