178 research outputs found

    EXIF as Language: Learning Cross-Modal Associations Between Images and Camera Metadata

    Full text link
    We learn a visual representation that captures information about the camera that recorded a given photo. To do this, we train a multimodal embedding between image patches and the EXIF metadata that cameras automatically insert into image files. Our model represents this metadata by simply converting it to text and then processing it with a transformer. The features that we learn significantly outperform other self-supervised and supervised features on downstream image forensics and calibration tasks. In particular, we successfully localize spliced image regions "zero shot" by clustering the visual embeddings for all of the patches within an image.Comment: Project link: http://hellomuffin.github.io/exif-as-languag

    Detection of Overlapping Passive Manipulation Techniques in Image Forensics

    Get PDF
    With a growing number of images uploaded daily to social media sites, it is essential to understand if an image can be used to trace its origin. Forensic investigations are focusing on analyzing images that are uploaded to social media sites resulting in an emphasis on building and validating tools. There has been a strong focus on understanding active manipulation or tampering techniques and building tools for analysis. However, research on manipulation is often studied in a vacuum, involving only one technique at a time. Additionally, less focus has been placed on passive manipulation, which can occur by simply uploading an image to a social media site. This research plots the path of an image through multiple social media sites and identifies unique markers in the metadata that can be used to track the image. Both Facebook and Twitter were utilized on both phone and web applications to fully understand any differences between direct and secondary uploads. A full metadata analysis was conducted including histogram and size comparisons. This paper presents several differences and unique metadata findings that allow image provenance to be traced to an original image. This includes a review of IPTC, ICC, and EXIF metadata, ICC profile and Color Profile Description, Encoding Processes, Estimated Quality Values as well as compression ratios. A checklist of variables is given to guide future evaluations of image provenance

    Digital forensic techniques for the reverse engineering of image acquisition chains

    Get PDF
    In recent years a number of new methods have been developed to detect image forgery. Most forensic techniques use footprints left on images to predict the history of the images. The images, however, sometimes could have gone through a series of processing and modification through their lifetime. It is therefore difficult to detect image tampering as the footprints could be distorted or removed over a complex chain of operations. In this research we propose digital forensic techniques that allow us to reverse engineer and determine history of images that have gone through chains of image acquisition and reproduction. This thesis presents two different approaches to address the problem. In the first part we propose a novel theoretical framework for the reverse engineering of signal acquisition chains. Based on a simplified chain model, we describe how signals have gone in the chains at different stages using the theory of sampling signals with finite rate of innovation. Under particular conditions, our technique allows to detect whether a given signal has been reacquired through the chain. It also makes possible to predict corresponding important parameters of the chain using acquisition-reconstruction artefacts left on the signal. The second part of the thesis presents our new algorithm for image recapture detection based on edge blurriness. Two overcomplete dictionaries are trained using the K-SVD approach to learn distinctive blurring patterns from sets of single captured and recaptured images. An SVM classifier is then built using dictionary approximation errors and the mean edge spread width from the training images. The algorithm, which requires no user intervention, was tested on a database that included more than 2500 high quality recaptured images. Our results show that our method achieves a performance rate that exceeds 99% for recaptured images and 94% for single captured images.Open Acces

    Robust estimation of exposure ratios in multi-exposure image stacks

    Full text link
    Merging multi-exposure image stacks into a high dynamic range (HDR) image requires knowledge of accurate exposure times. When exposure times are inaccurate, for example, when they are extracted from a camera's EXIF metadata, the reconstructed HDR images reveal banding artifacts at smooth gradients. To remedy this, we propose to estimate exposure ratios directly from the input images. We derive the exposure time estimation as an optimization problem, in which pixels are selected from pairs of exposures to minimize estimation error caused by camera noise. When pixel values are represented in the logarithmic domain, the problem can be solved efficiently using a linear solver. We demonstrate that the estimation can be easily made robust to pixel misalignment caused by camera or object motion by collecting pixels from multiple spatial tiles. The proposed automatic exposure estimation and alignment eliminates banding artifacts in popular datasets and is essential for applications that require physically accurate reconstructions, such as measuring the modulation transfer function of a display. The code for the method is available.Comment: 11 pages, 11 figures, journa

    Forensic analysis of video file formats

    Get PDF
    AbstractVideo file format standards define only a limited number of mandatory features and leave room for interpretation. Design decisions of device manufacturers and software vendors are thus a fruitful resource for forensic video authentication. This paper explores AVI and MP4-like video streams of mobile phones and digital cameras in detail. We use customized parsers to extract all file format structures of videos from overall 19 digital camera models, 14 mobile phone models, and 6 video editing toolboxes. We report considerable differences in the choice of container formats, audio and video compression algorithms, acquisition parameters, and internal file structure. In combination, such characteristics can help to authenticate digital video files in forensic settings by distinguishing between original and post-processed videos, verifying the purported source of a file, or identifying the true acquisition device model or the processing software used for video processing

    Direct structure estimation for 3D reconstruction

    Get PDF

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field
    corecore