15,557 research outputs found

    Analysis of Self-Reported Walking for Transit in a Sprawling Urban Metropolitan Area in the Western U.S.

    Get PDF
    Walkability is associated with increased levels of physical activity and improved health and sustainability. The sprawling design of many metropolitan areas of the western U.S., such as Las Vegas, influences their walkability. The purpose of this study was to consider sprawl characteristics along with well-known correlates of walkability to determine what factors influence self-reported minutes of active transportation. Residents from four neighborhoods in the Las Vegas Metropolitan Area, targeted for their high and low walkability scores, were surveyed for their perceptions of street-connectivity, residential-density, land-use mix, and retail–floor-area ratio and sprawl characteristics including distance between crosswalks, single-entry-communities, high-speed streets, shade, and access to transit. A Poisson model provided the best estimates for minutes of active transportation and explained 11.28% of the variance. The model that included sprawl characteristics resulted in a better estimate of minutes of active transportation compared to the model without them. The results indicate that increasing walkability in urban areas such as Las Vegas requires an explicit consideration of its sprawl characteristics. Not taking such design characteristics into account may result in the underestimation of the influence of sprawl on active transportation and may result in a missed opportunity to increase walking. Understanding the correlates of walkability at the local level is important in successfully promoting walking as a means to increase active transportation and improve community health and sustainability

    Eigenvector Synchronization, Graph Rigidity and the Molecule Problem

    Full text link
    The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend on previous work and propose the 3D-ASAP algorithm, for the graph realization problem in R3\mathbb{R}^3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch there corresponds an element of the Euclidean group Euc(3) of rigid transformations in R3\mathbb{R}^3, and the goal is to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-SP-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a preprocessing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably to similar state-of-the art localization algorithms.Comment: 49 pages, 8 figure

    Minimum Distance Estimation of Milky Way Model Parameters and Related Inference

    Get PDF
    We propose a method to estimate the location of the Sun in the disk of the Milky Way using a method based on the Hellinger distance and construct confidence sets on our estimate of the unknown location using a bootstrap based method. Assuming the Galactic disk to be two-dimensional, the sought solar location then reduces to the radial distance separating the Sun from the Galactic center and the angular separation of the Galactic center to Sun line, from a pre-fixed line on the disk. On astronomical scales, the unknown solar location is equivalent to the location of us earthlings who observe the velocities of a sample of stars in the neighborhood of the Sun. This unknown location is estimated by undertaking pairwise comparisons of the estimated density of the observed set of velocities of the sampled stars, with densities estimated using synthetic stellar velocity data sets generated at chosen locations in the Milky Way disk according to four base astrophysical models. The "match" between the pair of estimated densities is parameterized by the affinity measure based on the familiar Hellinger distance. We perform a novel cross-validation procedure to establish a desirable "consistency" property of the proposed method.Comment: 25 pages, 10 Figures. This version incorporates the suggestions made by the referees. To appear in SIAM/ASA Journal on Uncertainty Quantificatio

    Generalizations of Ripley's K-function with Application to Space Curves

    Full text link
    The intensity function and Ripley's K-function have been used extensively in the literature to describe the first and second moment structure of spatial point sets. This has many applications including describing the statistical structure of synaptic vesicles. Some attempts have been made to extend Ripley's K-function to curve pieces. Such an extension can be used to describe the statistical structure of muscle fibers and brain fiber tracks. In this paper, we take a computational perspective and construct new and very general variants of Ripley's K-function for curves pieces, surface patches etc. We discuss the method from [Chiu, Stoyan, Kendall, & Mecke 2013] and compare it with our generalizations theoretically, and we give examples demonstrating the difference in their ability to separate sets of curve pieces.Comment: 9 pages & 8 figure
    • …
    corecore