514 research outputs found

    Robust Bayesian target detection algorithm for depth imaging from sparse single-photon data

    Get PDF
    This paper presents a new Bayesian model and associated algorithm for depth and intensity profiling using full waveforms from time-correlated single-photon counting (TCSPC) measurements in the limit of very low photon counts (i.e., typically less than 20 photons per pixel). The model represents each Lidar waveform as an unknown constant background level, which is combined in the presence of a target, to a known impulse response weighted by the target intensity and finally corrupted by Poisson noise. The joint target detection and depth imaging problem is expressed as a pixel-wise model selection and estimation problem which is solved using Bayesian inference. Prior knowledge about the problem is embedded in a hierarchical model that describes the dependence structure between the model parameters while accounting for their constraints. In particular, Markov random fields (MRFs) are used to model the joint distribution of the background levels and of the target presence labels, which are both expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm including reversible-jump updates is then proposed to compute the Bayesian estimates of interest. This algorithm is equipped with a stochastic optimization adaptation mechanism that automatically adjusts the parameters of the MRFs by maximum marginal likelihood estimation. Finally, the benefits of the proposed methodology are demonstrated through a series of experiments using real data.Comment: arXiv admin note: text overlap with arXiv:1507.0251

    Characterizing Forest Structure by Means of Remote Sensing: A Review

    Get PDF

    Reducing the dimensionality of hyperspectral remotely sensed data with applications for maximum likelihood image classification

    Get PDF
    As well as the many benefits associated with the evolution of multispectral sensors into hyperspectral sensors there is also a considerable increase in storage space and the computational load to process the data. Consequently the remote sensing ommunity is investigating and developing statistical methods to alleviate these problems.The research presented here investigates several approaches to reducing the dimensionality of hyperspectral remotely sensed data while maintaining the levels of accuracy achieved using the full dimensionality of the data. It was conducted with an emphasis on applications in maximum likelihood classification (MLC) of hyperspectral image data. An inherent characteristic of hyperspectral data is that adjacent bands are typically highly correlated and this results in a high level of redundancy in the data. The high correlations between adjacent bands can be exploited to realise significant reductions in the dimensionality of the data, for a negligible reduction in classification accuracy.The high correlations between neighbouring bands is related to their response functions overlapping with each other by a large amount. The spectral band filter functions were modelled for the HyMap instrument that acquires hyperspectral data used in this study. The results were compared with measured filter function data from a similar, more recent HyMap instrument. The results indicated that on average HyMap spectral band filter functions exhibit overlaps with their neighbouring bands of approximately 60%. This is considerable and partly accounts for the high correlation between neighbouring spectral bands on hyperspectral instruments.A hyperspectral HyMap image acquired over an agricultural region in the south west of Western Australia has been used for this research. The image is composed of 512 × 512 pixels, with each pixel having a spatial resolution of 3.5 m. The data was initially reduced from 128 spectral bands to 82 spectral bands by removing the highly overlapping spectral bands, those which exhibit high levels of noise and those bands located at strong atmospheric absorption wavelengths. The image was examined and found to contain 15 distinct spectral classes. Training data was selected for each of these classes and class spectral mean and covariance matrices were generated.The discriminant function for MLC makes use of not only the measured pixel spectra but also the sample class covariance matrices. This thesis first examines reducing the parameterization of these covariance matrices for use by the MLC algorithm. The full dimensional spectra are still used for the classification but the number of parameters needed to describe the covariance information is significantly reduced. When a threshold of 0.04 was used in conjunction with the partial correlation matrices to identify low values in the inverse covariance matrices, the resulting classification accuracy was 96.42%. This was achieved using only 68% of the elements in the original covariance matrices.Both wavelet techniques and cubic splines were investigated as a means of representing the measured pixel spectra with considerably fewer bands. Of the different mother wavelets used, it was found that the Daubechies-4 wavelet performed slightly better than the Haar and Daubechies-6 wavelets at generating accurate spectra with the least number of parameters. The wavelet techniques investigated produced more accurately modelled spectra compared with cubic splines with various knot selection approaches. A backward stepwise knot selection technique was identified to be more effective at approximating the spectra than using regularly spaced knots. A forward stepwise selection technique was investigated but was determined to be unsuited to this process.All approaches were adapted to process an entire hyperspectral image and the subsequent images were classified using MLC. Wavelet approximation coefficients gave slightly better classification results than wavelet detail coefficients and the Haar wavelet proved to be a more superior wavelet for classification purposes. With 6 approximation coefficients, the Haar wavelet could be used to classify the data with an accuracy of 95.6%. For 11 approximation coefficients this figure increased to 96.1%.First and second derivative spectra were also used in the classification of the image. The first and second derivatives were determined for each of the class spectral means and for each band the standard deviations were calculated of both the first and second derivatives. Bands were then ranked in order of decreasing standard deviation. Bands showing the highest standard deviations were identified and the derivatives were generated for the entire image at these wavelengths. The resulting first and second derivative images were then classified using MLC. Using 25 spectral bands classification accuracies of approximately 96% and 95% were achieved using the first and second derivative images respectively. These results are comparable with those from using wavelets although wavelets produced higher classification accuracies when fewer coefficients were used

    Sparse representation based hyperspectral image compression and classification

    Get PDF
    Abstract This thesis presents a research work on applying sparse representation to lossy hyperspectral image compression and hyperspectral image classification. The proposed lossy hyperspectral image compression framework introduces two types of dictionaries distinguished by the terms sparse representation spectral dictionary (SRSD) and multi-scale spectral dictionary (MSSD), respectively. The former is learnt in the spectral domain to exploit the spectral correlations, and the latter in wavelet multi-scale spectral domain to exploit both spatial and spectral correlations in hyperspectral images. To alleviate the computational demand of dictionary learning, either a base dictionary trained offline or an update of the base dictionary is employed in the compression framework. The proposed compression method is evaluated in terms of different objective metrics, and compared to selected state-of-the-art hyperspectral image compression schemes, including JPEG 2000. The numerical results demonstrate the effectiveness and competitiveness of both SRSD and MSSD approaches. For the proposed hyperspectral image classification method, we utilize the sparse coefficients for training support vector machine (SVM) and k-nearest neighbour (kNN) classifiers. In particular, the discriminative character of the sparse coefficients is enhanced by incorporating contextual information using local mean filters. The classification performance is evaluated and compared to a number of similar or representative methods. The results show that our approach could outperform other approaches based on SVM or sparse representation. This thesis makes the following contributions. It provides a relatively thorough investigation of applying sparse representation to lossy hyperspectral image compression. Specifically, it reveals the effectiveness of sparse representation for the exploitation of spectral correlations in hyperspectral images. In addition, we have shown that the discriminative character of sparse coefficients can lead to superior performance in hyperspectral image classification.EM201

    Advances in Data Mining Knowledge Discovery and Applications

    Get PDF
    Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications

    Effective and Trustworthy Dimensionality Reduction Approaches for High Dimensional Data Understanding and Visualization

    Get PDF
    In recent years, the huge expansion of digital technologies has vastly increased the volume of data to be explored. Reducing the dimensionality of data is an essential step in data exploration and visualisation. The integrity of a dimensionality reduction technique relates to the goodness of maintaining the data structure. The visualisation of a low dimensional data that has not captured the high dimensional space data structure is untrustworthy. The scale of maintained data structure by a method depends on several factors, such as the type of data considered and tuning parameters. The type of the data includes linear and nonlinear data, and the tuning parameters include the number of neighbours and perplexity. In reality, most of the data under consideration are nonlinear, and the process to tune parameters could be costly since it depends on the number of data samples considered. Currently, the existing dimensionality reduction approaches suffer from the following problems: 1) Only work well with linear data, 2) The scale of maintained data structure is related to the number of data samples considered, and/or 3) Tear problem and false neighbours problem.To deal with all the above-mentioned problems, this research has developed Same Degree Distribution (SDD), multi-SDD (MSDD) and parameter-free SDD approaches , that 1) Saves computational time because its tuning parameter does not 2) Produces more trustworthy visualisation by using degree-distribution that is smooth enough to capture local and global data structure, and 3) Does not suffer from tear and false neighbours problems due to using the same degree-distribution in the high and low dimensional spaces to calculate the similarities between data samples. The developed dimensionality reduction methods are tested with several popu- lar synthetics and real datasets. The scale of the maintained data structure is evaluated using different quality metrics, i.e., Kendall’s Tau coefficient, Trustworthiness, Continuity, LCMC, and Co-ranking matrix. Also, the theoretical analysis of the impact of dissimilarity measure in structure capturing has been supported by simulations results conducted in two different datasets evaluated by Kendall’s Tau and Co-ranking matrix. The SDD, MSDD, and parameter-free SDD methods do not outperform other global methods such as Isomap in data with a large fraction of large pairwise distances, and it remains a further work task. Reducing the computational complexity is another objective for further work

    Hyperspectral Imaging from Ground Based Mobile Platforms and Applications in Precision Agriculture

    Get PDF
    This thesis focuses on the use of line scanning hyperspectral sensors on mobile ground based platforms and applying them to agricultural applications. First this work deals with the geometric and radiometric calibration and correction of acquired hyperspectral data. When operating at low altitudes, changing lighting conditions are common and inevitable, complicating the retrieval of a surface's reflectance, which is solely a function of its physical structure and chemical composition. Therefore, this thesis contributes the evaluation of an approach to compensate for changes in illumination and obtain reflectance that is less labour intensive than traditional empirical methods. Convenient field protocols are produced that only require a representative set of illumination and reflectance spectral samples. In addition, a method for determining a line scanning camera's rigid 6 degree of freedom (DOF) offset and uncertainty with respect to a navigation system is developed, enabling accurate georegistration and sensor fusion. The thesis then applies the data captured from the platform to two different agricultural applications. The first is a self-supervised weed detection framework that allows training of a per-pixel classifier using hyperspectral data without manual labelling. The experiments support the effectiveness of the framework, rivalling classifiers trained on hand labelled training data. Then the thesis demonstrates the mapping of mango maturity using hyperspectral data on an orchard wide scale using efficient image scanning techniques, which is a world first result. A novel classification, regression and mapping pipeline is proposed to generate per tree mango maturity averages. The results confirm that maturity prediction in mango orchards is possible in natural daylight using a hyperspectral camera, despite complex micro-illumination-climates under the canopy

    Bayesian nonlinear hyperspectral unmixing with spatial residual component analysis

    Get PDF
    This paper presents a new Bayesian model and algorithm for nonlinear unmixing of hyperspectral images. The model proposed represents the pixel reflectances as linear combinations of the endmembers, corrupted by nonlinear (with respect to the endmembers) terms and additive Gaussian noise. Prior knowledge about the problem is embedded in a hierarchical model that describes the dependence structure between the model parameters and their constraints. In particular, a gamma Markov random field is used to model the joint distribution of the nonlinear terms, which are expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm is then proposed to compute the Bayesian estimates of interest and perform Bayesian inference. This algorithm is equipped with a stochastic optimisation adaptation mechanism that automatically adjusts the parameters of the gamma Markov random field by maximum marginal likelihood estimation. Finally, the proposed methodology is demonstrated through a series of experiments with comparisons using synthetic and real data and with competing state-of-the-art approaches
    • …
    corecore