48 research outputs found

    Broadband technologies for efficient MRI

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 217-226).(cont.) independent receiver coils in parallel or time-axis compression, can be cast as complementary to broadband MRI encoding. This affords broadband non-Fourier MRI with time efficiencies over current fast MRI methods. Finally, we describe the first software and hardware implementation combining these mathematical and physical principles in a proof-of-concept practical broadband MRI system, shown to achieve one order of magnitude increase in efficiency for both 2D and 3D MR imaging.This dissertation investigates the use of matrix compression techniques to increase the efficiency of data acquisition in Magnetic Resonance Imaging (MRI) scanners, such as those routinely used in hospitals. MRI is based on the Nuclear Magnetic Resonance (NMR) principle which states that nuclei with a non-zero spin may only attain specific quantum spin states when under the influence of a magnetic field. By absorbing a photon of energy equal to the difference between two spin states, nuclei are "excited", flipping spins to a higher energy state. Their classical sum, the magnetization vector, once tipped from the lowest energy state, precesses like a spinning top about the direction of the magnetic field. The frequency of its precession depends entirely upon the field's strength. Therefore, just as a camera detects reflected light, including associated color, MRI detects spin density and its associated surrounding chemical conditions via local effects on field strength. MRI, i.e., obtaining an image via localization of the NMR signal, is typically accomplished by manipulating the precession frequency based on location, casting MRI into a Fourier transform problem. In order to increase MRI acquisition efficiency, we follow the proposition of extending the applicability of the physics that MRI is based on. That is, the MR signal content may be prospectively encoded at the excitation step by spatially manipulating both the amplitude and phase of the resonant excitation. In so doing, we create a novel application of algebraic matrix factorization technologies, casting them into broadband MRI signal compression technologies. We examine recent literature to conclude that most fast MRI methods that employ e.g., additional encoding such as multipleby Dimitrios Mitsouras.Ph.D

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed

    Gluons and the quark sea at high energies: distributions, polarization, tomography

    Get PDF
    This report is based on a ten-week program on "Gluons and the quark sea at high-energies", which took place at the Institute for Nuclear Theory in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics. This report is organized around four major themes: i) the spin and flavor structure of the proton, ii) three-dimensional structure of nucleons and nuclei in momentum and configuration space, iii) QCD matter in nuclei, and iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific opportunities presented by an EIC.Comment: 547 pages, A report on the joint BNL/INT/Jlab program on the science case for an Electron-Ion Collider, September 13 to November 19, 2010, Institute for Nuclear Theory, Seattle; v2 with minor changes, matches printed versio

    Initial technical environmental, and economic evaluation of space solar power concepts. Volume 2: Detailed report

    Get PDF
    The SPS concepts which appear to be technically feasible are discussed in terms of the economic viability and competitive costs with other energy sources. The concepts discussed include: power station, microwave reception and conversion, space construction and maintenance, space transportation, and program costs and analysis. The conclusions presented include: (1) The maximum output of an individual microwave transmission link to earth is about 5 GW. (2) The mass of 10 GW SPS is between 47,000,000 and 124,000,00 kg. (3) The silicon solar cell arrays make up well over half the weight and cost of the satellite. (4) The SPS in equatorial orbit will be eclipsed by the earth and by other satellites

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication provides archival reports on developments in programs in space communications, radio navigation, radio science, and ground-based radio and radar astronomy. It reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standardization activities at the Jet Propulsion Laboratory for space data and information systems

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes
    corecore