138 research outputs found

    Error estimators and their analysis for CG, Bi-CG and GMRES

    Full text link
    We present an analysis of the uncertainty in the convergence of iterative linear solvers when using relative residue as a stopping criterion, and the resulting over/under computation for a given tolerance in error. This shows that error estimation is indispensable for efficient and accurate solution of moderate to high conditioned linear systems (κ>100\kappa>100), where κ\kappa is the condition number of the matrix. An O(1)\mathcal{O}(1) error estimator for iterations of the CG (Conjugate Gradient) algorithm was proposed more than two decades ago. Recently, an O(k2)\mathcal{O}(k^2) error estimator was described for the GMRES (Generalized Minimal Residual) algorithm which allows for non-symmetric linear systems as well, where kk is the iteration number. We suggest a minor modification in this GMRES error estimation for increased stability. In this work, we also propose an O(n)\mathcal{O}(n) error estimator for A-norm and l2l_{2} norm of the error vector in Bi-CG (Bi-Conjugate Gradient) algorithm. The robust performance of these estimates as a stopping criterion results in increased savings and accuracy in computation, as condition number and size of problems increase

    A Fast Algorithm for Parabolic PDE-based Inverse Problems Based on Laplace Transforms and Flexible Krylov Solvers

    Full text link
    We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method

    Embedded techniques for choosing the parameter in Tikhonov regularization

    Full text link
    This paper introduces a new strategy for setting the regularization parameter when solving large-scale discrete ill-posed linear problems by means of the Arnoldi-Tikhonov method. This new rule is essentially based on the discrepancy principle, although no initial knowledge of the norm of the error that affects the right-hand side is assumed; an increasingly more accurate approximation of this quantity is recovered during the Arnoldi algorithm. Some theoretical estimates are derived in order to motivate our approach. Many numerical experiments, performed on classical test problems as well as image deblurring are presented

    Closer to the solutions: iterative linear solvers

    Get PDF
    The solution of dense linear systems received much attention after the second world war, and by the end of the sixties, most of the problems associated with it had been solved. For a long time, Wilkinson's \The Algebraic Eigenvalue Problem" [107], other than the title suggests, became also the standard textbook for the solution of linear systems. When it became clear that partial dierential equations could be solved numerically, to a level of accuracy that was of interest for application areas (such as reservoir engineering, and reactor diusion modeling), there was a strong need for the fast solution of the discretized systems, and iterative methods became popular for these problems

    On the Convergence of Krylov Methods with Low-Rank Truncations

    No full text
    • …
    corecore