1,306 research outputs found

    Use of TerraSAR-X data to retrieve soil moisture over bare soil agricultural fields

    Get PDF
    The retrieval of the bare soil moisture content from TerraSAR-X data is discussed using empirical approaches. Two cases were evaluated: 1) one image at low or high incidence angle and 2) two images, one at low incidence and one at high incidence. This study shows by using three databases collected between 2008 and 2010 over two study sites in France (Orgeval and Villamblain) that TerraSAR-X is a good remote sensing tool for the retrieving of surface soilmoisture with accuracy of about 3% (rmse).Moreover, the accuracy of the soil moisture estimate does not improve when two incidence angles (26◦–28◦ or 50◦–52◦) are used instead of only one. When compared with the result obtained with a high incidence angle (50◦–52◦), the use of low incidence angle (26◦–28◦) does not enable a significant improvement in estimating soil moisture (about 1%)

    FIREX mission requirements document for renewable resources

    Get PDF
    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed

    Empirical fitting of forward backscattering models for multitemporal retrieval of soil moisture from radar data at L-band

    Get PDF
    A multitemporal algorithm, originally conceived for the C-band radar aboard the Sentinel-1 satellite, has been updated to retrieve soil moisture from L-band radar data, such as those provided by the National Aeronautics and Space Administration Soil Moisture Active/Passive (SMAP) mission. This type of algorithm may deliver more accurate soil moisture maps that mitigate the effect of roughness and vegetation changes. Within the multitemporal inversion scheme based on the Bayesian maximum a posteriori probability (MAP) criterion, a dense time series of radar measurements is integrated to invert a forward backscattering model. The model calibration and validation tasks have been accomplished using the data collected during the SMAP validation experiment 12 spanning several soil conditions (pasture, wheat, corn, and soybean). The data have been used to update the forward model for bare soil scattering at L-band and to tune a simple vegetation scattering model considering two different classes of vegetation: those producing mainly single scattering effects and those characterized by a significant multiple scattering involving terrain surface and vegetation elements interaction. The algorithm retrievals showed a root mean square difference (RMSD) around 5% over bare soil, soybean, and cornfields. As for wheat, a bias was observed; when removed, the RMSD went down from 7.7% to 5%

    Toward an Operational Bare Soil Moisture Mapping Using TerraSAR-X Data Acquired Over Agricultural Areas

    Get PDF
    International audienceTerraSAR-X data are processed for an "operational" mapping of bare soils moisture in agricultural areas. Empirical relationships between TerraSAR-X signal and soil moisture were established and validated over different North European agricultural study sites. The results show that the mean error on the soil moisture estimation is less than 4% regardless of the TerraSAR-X configuration (incidence angle, polarization) and the soil surface characteristics (soil surface roughness, soil composition). Furthermore, the potential of TerraSAR-X data (signal, texture features) to discriminate bare soils from other land cover classes in an agricultural watershed was evaluated. The mean signal backscattered from bare soils can be easily differentiated from signals from other land cover classes when the neighboring plots are covered by fully developed crops. This was observed regardless of the TerraSAR-X configuration and the soil moisture conditions. When neighboring plots are covered by early growth crops, a TerraSAR-X image acquired under wet conditions can be useful for discriminating bare soils. Bare soil masks were calculated by object-oriented classifications ofmono-configuration TerraSAR-Xdata. The overall accuracies of the bare soils mapping were higher than 84% for validation based on object and pixel. The bare soils mapping method and the soil moisture relationships were applied to TerraSAR-X images to generate soil moisture maps. The results show that TerraSAR-X sensors provide useful data for monitoring the spatial variations of soil moisture at the within-plot scale. The methods of bare soils moisture mapping developed in this paper can be used in operational applications in agriculture, and hydrology

    Irrigated grassland monitoring using a time series of terraSAR-X and COSMO-skyMed X-Band SAR Data

    Get PDF
    [Departement_IRSTEA]Territoires [TR1_IRSTEA]SYNERGIE [Axe_IRSTEA]TETIS-ATTOSInternational audienceThe objective of this study was to analyze the sensitivity of radar signals in the X-band in irrigated grassland conditions. The backscattered radar signals were analyzed according to soil moisture and vegetation parameters using linear regression models. A time series of radar (TerraSAR-X and COSMO-SkyMed) and optical (SPOT and LANDSAT) images was acquired at a high temporal frequency in 2013 over a small agricultural region in southeastern France. Ground measurements were conducted simultaneously with the satellite data acquisitions during several grassland growing cycles to monitor the evolution of the soil and vegetation characteristics. The comparison between the Normalized Difference Vegetation Index (NDVI) computed from optical images and the in situ Leaf Area Index (LAI) showed a logarithmic relationship with a greater scattering for the dates corresponding to vegetation well developed before the harvest. The correlation between the NDVI and the vegetation parameters (LAI, vegetation height, biomass, and vegetation water content) was high at the beginning of the growth cycle. This correlation became insensitive at a certain threshold corresponding to high vegetation (LAI ~2.5 m2/m2). Results showed that the radar signal depends on variations in soil moisture, with a higher sensitivity to soil moisture for biomass lower than 1 kg/m². HH and HV polarizations had approximately similar sensitivities to soil moisture. The penetration depth of the radar wave in the X-band was high, even for dense and high vegetation; flooded areas were visible in the images with higher detection potential in HH polarization than in HV polarization, even for vegetation heights reaching 1 m. Lower sensitivity was observed at the X-band between the radar signal and the vegetation parameters with very limited potential of the X-band to monitor grassland growth. These results showed that it is possible to track gravity irrigation and soil moisture variations from SAR X-band images acquired at high spatial resolution (an incidence angle near 30°)

    How far SAR has fulfilled its expectation for soil moisture retrieval

    Get PDF
    Microwave remote sensing is one of the most promising tools for soil moisture estimation owing to its high sensitivity to dielectric properties of the target. Many ground-based scatterometer experiments were carried out for exploring this potential. After the launch of ERS-1, expectation was generated to operationally retrieve large area soil moisture information. However, along with its strong sensitivity to soil moisture, SAR is also sensitive to other parameters like surface roughness, crop cover and soil texture. Single channel SAR was found to be inadequate to resolve the effects of these parameters. Low and high incidence angle RADARSAT-1 SAR was exploited for resolving these effects and incorporating the effects of surface roughness and crop cover in the soil moisture retrieval models. Since the moisture and roughness should remain unchanged between low and high angle SAR acquisition, the gap period between the two acquisitions should be minimum. However, for RADARSAT-1 the gap is typically of the order of 3 days. To overcome this difficulty, simultaneously acquired ENVISAT-1 ASAR HH/VV and VV/VH data was studied for operational soil moisture estimation. Cross-polarised SAR data has been exploited for its sensitivity to vegetation for crop-covered fields where as co-pol ratio has been used to incorporate surface roughness for the case of bare soil. Although there has not been any multi-frequency SAR system onboard a satellite platform, efforts have also been made to understand soil moisture sensitivity and penetration capability at different frequencies using SIR-C/X-SAR and multi-parametric Airborne SAR data. This paper describes multi-incidence angle, multi-polarised and multi-frequency SAR approaches for soil moisture retrieval over large agricultural area

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management

    Quantitative Estimation of Surface Soil Moisture in Agricultural Landscapes using Spaceborne Synthetic Aperture Radar Imaging at Different Frequencies and Polarizations

    Get PDF
    Soil moisture and its distribution in space and time plays an important role in the surface energy balance at the soil-atmosphere interface. It is a key variable influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Due to their large spatial variability, estimation of spatial patterns of soil moisture from field measurements is difficult and not feasible for large scale analyses. In the past decades, Synthetic Aperture Radar (SAR) remote sensing has proven its potential to quantitatively estimate near surface soil moisture at high spatial resolutions. Since the knowledge of the basic SAR concepts is important to understand the impact of different natural terrain features on the quantitative estimation of soil moisture and other surface parameters, the fundamental principles of synthetic aperture radar imaging are discussed. Also the two spaceborne SAR missions whose data was used in this study, the ENVISAT of the European Space Agency (ESA) and the ALOS of the Japanese Aerospace Exploration Agency (JAXA), are introduced. Subsequently, the two essential surface properties in the field of radar remote sensing, surface soil moisture and surface roughness are defined, and the established methods of their measurement are described. The in situ data used in this study, as well as the research area, the River Rur catchment, with the individual test sites where the data was collected between 2007 and 2010, are specified. On this basis, the important scattering theories in radar polarimetry are discussed and their application is demonstrated using novel polarimetric ALOS/PALSAR data. A critical review of different classical approaches to invert soil moisture from SAR imaging is provided. Five prevalent models have been chosen with the aim to provide an overview of the evolution of ideas and techniques in the field of soil moisture estimation from active microwave data. As the core of this work, a new semi-empirical model for the inversion of surface soil moisture from dual polarimetric L-band SAR data is introduced. This novel approach utilizes advanced polarimetric decomposition techniques to correct for the disturbing effects from surface roughness and vegetation on the soil moisture retrieval without the use of a priori knowledge. The land use specific algorithms for bare soil, grassland, sugar beet, and winter wheat allow quantitative estimations with accuracies in the order of 4 Vol.-%. Application of remotely sensed soil moisture patterns is demonstrated on the basis of mesoscale SAR data by investigating the variability of soil moisture patterns at different spatial scales ranging from field scale to catchment scale. The results show that the variability of surface soil moisture decreases with increasing wetness states at all scales. Finally, the conclusions from this dissertational research are summarized and future perspectives on how to extend the proposed model by means of improved ground based measurements and upcoming advances in sensor technology are discussed. The results obtained in this thesis lead to the conclusion that state-of-the-art spaceborne dual polarimetric L-band SAR systems are not only suitable to accurately retrieve surface soil moisture contents of bare as well as of vegetated agricultural fields and grassland, but for the first time also allow investigating within-field spatial heterogeneities from space

    Active microwave users working group program planning

    Get PDF
    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured
    • …
    corecore