83 research outputs found

    Empirical fitting of forward backscattering models for multitemporal retrieval of soil moisture from radar data at L-band

    Get PDF
    A multitemporal algorithm, originally conceived for the C-band radar aboard the Sentinel-1 satellite, has been updated to retrieve soil moisture from L-band radar data, such as those provided by the National Aeronautics and Space Administration Soil Moisture Active/Passive (SMAP) mission. This type of algorithm may deliver more accurate soil moisture maps that mitigate the effect of roughness and vegetation changes. Within the multitemporal inversion scheme based on the Bayesian maximum a posteriori probability (MAP) criterion, a dense time series of radar measurements is integrated to invert a forward backscattering model. The model calibration and validation tasks have been accomplished using the data collected during the SMAP validation experiment 12 spanning several soil conditions (pasture, wheat, corn, and soybean). The data have been used to update the forward model for bare soil scattering at L-band and to tune a simple vegetation scattering model considering two different classes of vegetation: those producing mainly single scattering effects and those characterized by a significant multiple scattering involving terrain surface and vegetation elements interaction. The algorithm retrievals showed a root mean square difference (RMSD) around 5% over bare soil, soybean, and cornfields. As for wheat, a bias was observed; when removed, the RMSD went down from 7.7% to 5%

    Shuttle imaging radar-C science plan

    Get PDF
    The Shuttle Imaging Radar-C (SIR-C) mission will yield new and advanced scientific studies of the Earth. SIR-C will be the first instrument to simultaneously acquire images at L-band and C-band with HH, VV, HV, or VH polarizations, as well as images of the phase difference between HH and VV polarizations. These data will be digitally encoded and recorded using onboard high-density digital tape recorders and will later be digitally processed into images using the JPL Advanced Digital SAR Processor. SIR-C geologic studies include cold-region geomorphology, fluvial geomorphology, rock weathering and erosional processes, tectonics and geologic boundaries, geobotany, and radar stereogrammetry. Hydrology investigations cover arid, humid, wetland, snow-covered, and high-latitude regions. Additionally, SIR-C will provide the data to identify and map vegetation types, interpret landscape patterns and processes, assess the biophysical properties of plant canopies, and determine the degree of radar penetration of plant canopies. In oceanography, SIR-C will provide the information necessary to: forecast ocean directional wave spectra; better understand internal wave-current interactions; study the relationship of ocean-bottom features to surface expressions and the correlation of wind signatures to radar backscatter; and detect current-system boundaries, oceanic fronts, and mesoscale eddies. And, as the first spaceborne SAR with multi-frequency, multipolarization imaging capabilities, whole new areas of glaciology will be opened for study when SIR-C is flown in a polar orbit

    Use of Satellite Radar Bistatic Measurements for Crop Monitoring: A Simulation Study on Corn Fields

    Get PDF
    This paper presents a theoretical study of microwave remote sensing of vegetated surfaces. The purpose of this study is to find out if satellite bistatic radar systems can provide a performance, in terms of sensitivity to vegetation geophysical parameters, equal to or greater than the performance of monostatic systems. Up to now, no suitable bistatic data collected over land surfaces are available from satellite, so that the electromagnetic model developed at Tor Vergata University has been used to perform simulations of the scattering coefficient of corn, over a wide range of observation angles at L- and C-band. According to the electromagnetic model, the most promising configuration is the one which measures the VV or HH bistatic scattering coefficient on the plane that lies at the azimuth angle orthogonal with respect to the incidence plane. At this scattering angle, the soil contribution is minimized, and the effects of vegetation growth are highlighted

    SAR (Synthetic Aperture Radar). Earth observing system. Volume 2F: Instrument panel report

    Get PDF
    The scientific and engineering requirements for the Earth Observing System (EOS) imaging radar are provided. The radar is based on Shuttle Imaging Radar-C (SIR-C), and would include three frequencies: 1.25 GHz, 5.3 GHz, and 9.6 GHz; selectable polarizations for both transmit and receive channels; and selectable incidence angles from 15 to 55 deg. There would be three main viewing modes: a local high-resolution mode with typically 25 m resolution and 50 km swath width; a regional mapping mode with 100 m resolution and up to 200 km swath width; and a global mapping mode with typically 500 m resolution and up to 700 km swath width. The last mode allows global coverage in three days. The EOS SAR will be the first orbital imaging radar to provide multifrequency, multipolarization, multiple incidence angle observations of the entire Earth. Combined with Canadian and Japanese satellites, continuous radar observation capability will be possible. Major applications in the areas of glaciology, hydrology, vegetation science, oceanography, geology, and data and information systems are described

    Polarimetric SAR for the monitoring of agricultural crops

    Get PDF
    The monitoring of agricultural crops is a matter of great importance. Remote sensing has been unanimously recognized as one of the most important techniques for agricultural crops monitoring. Within the framework of active remote sensing, the capabilities of the Synthetic Aperture Radar (SAR) to provide fine spatial resolution and a wide area coverage, both in day and night time and almost under all weather conditions, make it a key tool for agricultural applications, including the monitoring and the estimation of phenological stages of crops. The monitoring of crop phenology is fundamental for the planning and the triggering of cultivation practices, since they require timely information about the crop conditions along the cultivation cycle. Due to the sensitivity of polarization of microwaves to crop structure and dielectric properties of the canopy, which in turn depend on the crop type, retrieval of phenology of agricultural crops by means of polarimetric SAR measurements is a promising application of this technology, especially after the launch of a number of polarimetric satellite sensors. In this thesis C-band polarimetric SAR measurements are used to estimate pheno- logical stages of agricultural crops. The behavior of polarimetric SAR observables at different growth stages is analyzed and then estimation procedures, aimed at the retrieval of such stages, are defined. The second topic on which this thesis is focused on is the land cover types discrimi- nation by means of X-band multi-polarization SAR data

    Polarimetric SAR for the monitoring of agricultural crops

    Get PDF
    The monitoring of agricultural crops is a matter of great importance. Remote sensing has been unanimously recognized as one of the most important techniques for agricultural crops monitoring. Within the framework of active remote sensing, the capabilities of the Synthetic Aperture Radar (SAR) to provide fine spatial resolution and a wide area coverage, both in day and night time and almost under all weather conditions, make it a key tool for agricultural applications, including the monitoring and the estimation of phenological stages of crops. The monitoring of crop phenology is fundamental for the planning and the triggering of cultivation practices, since they require timely information about the crop conditions along the cultivation cycle. Due to the sensitivity of polarization of microwaves to crop structure and dielectric properties of the canopy, which in turn depend on the crop type, retrieval of phenology of agricultural crops by means of polarimetric SAR measurements is a promising application of this technology, especially after the launch of a number of polarimetric satellite sensors. In this thesis C-band polarimetric SAR measurements are used to estimate pheno- logical stages of agricultural crops. The behavior of polarimetric SAR observables at different growth stages is analyzed and then estimation procedures, aimed at the retrieval of such stages, are defined. The second topic on which this thesis is focused on is the land cover types discrimi- nation by means of X-band multi-polarization SAR data

    Radar Remote Sensing of Agricultural Canopies: A Review

    Full text link
    • …
    corecore