110 research outputs found

    A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks

    Get PDF
    With the huge advancement of nanotechnology over the past years, the devices are shrinking into micro-scale, even nano-scale. Additionally, the Internet of nano-things (IoNTs) are generally regarded as the ultimate formation of the current sensor networks and the development of nanonetworks would be of great help to its fulfilment, which would be ubiquitous with numerous applications in all domains of life. However, the communication between the devices in such nanonetworks is still an open problem. Body-centric nanonetworks are believed to play an essential role in the practical application of IoNTs. BCNNs are also considered as domain specific like wireless sensor networks and always deployed on purpose to support a particular application. In these networks, electromagnetic and molecular communications are widely considered as two main promising paradigms and both follow their own development process. In this survey, the recent developments of these two paradigms are first illustrated in the aspects of applications, network structures, modulation techniques, coding techniques and security to then investigate the potential of hybrid communication paradigms. Meanwhile, the enabling technologies have been presented to apprehend the state-of-art with the discussion on the possibility of the hybrid technologies. Additionally, the inter-connectivity of electromagnetic and molecular body-centric nanonetworks is discussed. Afterwards, the related security issues of the proposed networks are discussed. Finally, the challenges and open research directions are presented

    Sensing and molecular communication using synthetic cells: Theory and algorithms

    Get PDF
    Molecular communication (MC) is a novel communication paradigm in which molecules are used to encode, transmit and decode information. MC is the primary method by which biological entities exchange information and hence, cooperate with each other. MC is a promising paradigm to enable communication between nano-bio machines, e.g., biosensors with potential applications such as cancer and disease detection, smart drug delivery, toxicity detection etc. The objective of this research is to establish the fundamentals of diffusion-based molecular communication and sensing via biological agents (e.g., synthetic bacteria) from a communication and information theory perspective, and design algorithms for reliable communication and sensing systems. In the first part of the thesis, we develop models for the diffusion channel as well as the molecular sensing at the receiver and obtain the maximum achievable rate for such a communication system. Next, we study reliability in MC. We design practical nodes by employing synthetic bacteria as the basic element of a biologically-compatible communication system and show how reliable nodes can be formed out of the collective behavior of a population of unreliable bio-agents. We model the probabilistic behavior of bacteria, obtain the node sensing capacity and propose a practical modulation scheme. In order to improve the reliability, we also introduce relaying and error-detecting codes for MC. In the second part of the thesis, we study the molecular sensing problem with potential applications in disease detection. We establish the rate-distortion theory for molecular sensing and investigate as to how distortion can be minimized via an optimal quantizer. We also study sensor cell arrays in which sensing redundancy is achieved by using multiple sensors to measure several molecular inputs simultaneously. We study the interference in sensing molecular inputs and propose a probabilistic message passing algorithm to solve the pattern detection over the molecular inputs of interest.Ph.D

    Channel Modeling for Diffusive Molecular Communication - A Tutorial Review

    Get PDF
    Molecular communication (MC) is a new communication engineering paradigm where molecules are employed as information carriers. MC systems are expected to enable new revolutionary applications such as sensing of target substances in biotechnology, smart drug delivery in medicine, and monitoring of oil pipelines or chemical reactors in industrial settings. As for any other kind of communication, simple yet sufficiently accurate channel models are needed for the design, analysis, and efficient operation of MC systems. In this paper, we provide a tutorial review on mathematical channel modeling for diffusive MC systems. The considered end-to-end MC channel models incorporate the effects of the release mechanism, the MC environment, and the reception mechanism on the observed information molecules. Thereby, the various existing models for the different components of an MC system are presented under a common framework and the underlying biological, chemical, and physical phenomena are discussed. Deterministic models characterizing the expected number of molecules observed at the receiver and statistical models characterizing the actual number of observed molecules are developed. In addition, we provide channel models for time-varying MC systems with moving transmitters and receivers, which are relevant for advanced applications such as smart drug delivery with mobile nanomachines. For complex scenarios, where simple MC channel models cannot be obtained from first principles, we investigate simulation-driven and experimentally-driven channel models. Finally, we provide a detailed discussion of potential challenges, open research problems, and future directions in channel modeling for diffusive MC systems.Comment: 40 pages; 23 figures, 2 tables; this paper is submitted to the Proceedings of IEE

    Channel modeling for diffusive molecular communication - a tutorial review

    Get PDF
    Molecular communication (MC) is a new communication engineering paradigm where molecules are employed as information carriers. MC systems are expected to enable new revolutionary applications such as sensing of target substances in biotechnology, smart drug delivery in medicine, and monitoring of oil pipelines or chemical reactors in industrial settings. As for any other kind of communication, simple yet sufficiently accurate channel models are needed for the design, analysis, and efficient operation of MC systems. In this paper, we provide a tutorial review on mathematical channel modeling for diffusive MC systems. The considered end-to-end MC channel models incorporate the effects of the release mechanism, the MC environment, and the reception mechanism on the observed information molecules. Thereby, the various existing models for the different components of an MC system are presented under a common framework and the underlying biological, chemical, and physical phenomena are discussed. Deterministic models characterizing the expected number of molecules observed at the receiver and statistical models characterizing the actual number of observed molecules are developed. In addition, we provide channel models for timevarying MC systems with moving transmitters and receivers, which are relevant for advanced applications such as smart drug delivery with mobile nanomachines. For complex scenarios, where simple MC channel models cannot be obtained from first principles, we investigate simulation-driven and experiment-driven channel models. Finally, we provide a detailed discussion of potential challenges, open research problems, and future directions in channel modeling for diffusive MC systems

    The design and performance analysis of diffusive molecular communication systems

    Get PDF
    Molecular Communications (MC) is an increasingly attractive technique to enable the networking of nano-machines by utilising molecules as the information carrier. The molecular diffusion can be described by either the movement of individual molecules or the molecular concentration. Accordingly, two kinds of diffusive MC systems have been modelled in previous literature. On the basis of these studies, the aim of this Ph.D. is to refine these two models, to implement functional transmission techniques and technologies, and to investigate the corresponding system performance. To fulfil this target, the whole Ph.D. is divided into two stages. During each stage, specific tasks have been accomplished, each contributing to the overarching research field of diffusive MC systems. In the first stage, an MC system model, named as the Model-I, is established and enhanced by focusing on the motion of individual molecules. The performance has been evaluated by both deriving mathematical expressions and implementing MATLAB simulations. Based on the Model-I, a distance estimation scheme has been proposed. Compared with existing methods, this new scheme is more accurate and less time-consuming. Moreover, five Stop-and-Wait Automatic Repeat reQuest (SW-AQR) protocols have been implemented on the Model-I. Results reveal that all these SW-ARQ schemes work well and can be beneficial under different circumstances. In the second stage, another MC system model, named as the Model-II, is established and refined with information conveyed by the molecular concentration. Both theoretical derivations and MATLAB simulations are provided to analyse the system reliability. Laid on this foundation, two distance measurement methods have been proposed and shown to be suitable for the Model-II. Additionally, to solve the long-range MC problem, relaying schemes have been applied by deploying a relay node between the source and target nano-machines. The performance improvement of each scheme is also illustrated respectively
    • …
    corecore