86 research outputs found

    A simple method for retrieving significant wave height from Dopplerized X-band radar

    Get PDF

    Analysis of Sea Surface Features by Using X-Band Radar Data Sets

    Get PDF
    En este trabajo se recoge el estudio de algunos de los fenómenos que ocurren en el océano debido al oleaje mediante técnicas de teledetección en el rango de las microondas. Estos fenómenos están relacionados con los diferentes mecanismos de formación de la imagen radar en banda X y en condiciones de incidencia tangente. Dichos mecanismos permiten detectar fenómenos en dichas imágenes radar (conocidas como “clutter” marino para propósitos de navegación), como son la relación de dispersión del oleaje, sus armónicos superiores y la contribución espectral conocida en la literatura científica como “group line”. Para el estudio de estos fenómenos se emplean los espectros de las imágenes proporcionadas por diferentes estaciones que utilizan tecnología basadas en radar de navegación en banda X. Los sistemas radar proporcionan una secuencia de imágenes en el dominio del tiempo que, gracias a la descomposición tridimensional de Fourier, permite obtener dichos espectros correspondientes de la secuencia de imágenes radar para su posterior análisis. Así, el espectro de la secuencia de imágenes de radar marino proporciona información sobre la distribución de la energía del oleaje, haciendo visible todos los fenómenos relacionados con el oleaje, el viento local, etc. El estudio del “clutter”, o del ruido de fondo del espectro, también es importante ya que permite la estimación de la altura significativa de las olas. En este trabajo se recoge un estudio detallado de la detección del “group line” y de la relación de dispersión del oleaje en función de la dirección de los diferentes ángulos de azimut que barren la imagen del radar, así como para diferentes alcances a partir de la ubicación del radar, además, de un estudio de la relación señal ruido considerando los fenómenos anteriores, así como de la máscara de iluminación de la superficie del mar, debida al efecto de ensombrecimiento de la antena radar, que también contiene las principales contribuciones del espectro de la imagen. A partir del análisis de las diferentes contribuciones del espectro de la imagen radar, y utilizando diversas técnicas de inteligencia artificial, se desarrollan algoritmos que mejoran la estima de parámetros oceanográficos, como la altura significativa del oleaje y las corrientes superficiales

    Evaluation and improvement of methods for estimating sea surface wave parameters from X-band marine radar data

    Get PDF
    In this thesis, several algorithms have been proposed for estimating ocean wave parameters from X-band marine radar data, i.e., wave direction, wave period, and significant wave height. In the first part of this study, the accuracy of wave direction and period estimation from X-band marine radar images under different rain rates is analyzed, and a sub-image selection scheme is proposed to mitigate the rain effect. Firstly, each radar image is divided into multiple sub-images, and the sub-images with relatively clear wave signatures are identified based on a random-forest based classiffication model. Then, wave direction is estimated by performing a Radon transform (RT) on each valid sub-image. As for wave period estimation, a random-forest based regression method is proposed. Texture features are first extracted from each pixel of the selected sub-image using the gray-level co-occurrence matrix (GLCM) and combined as a feature vector. Those feature vectors extracted from both rain-free and rain-contaminated training samples are then used to train a random-forest based wave period regression model. Shore-based X-band marine radar images, simultaneous rain rate data, as well as buoy-measured wave data collected on the West Coast of the United States are used to analyze the rain effect on wave parameter estimation accuracy and to validate the proposed method. Experimental results show that the proposed subimage selection scheme improves the estimation accuracy of both wave direction and wave period under different rain rates, with reductions of root-mean-square errors (RMSEs) by 6.9゚, 6.0゚, 4.9゚, and 1.0゚ for wave direction under rainless, light rain, moderate rain, and heavy rain conditions, respectively. As for wave period estimation, the RMSEs decrease by 0.13 s, 0.20 s, 0.30 s, and 0.20 s under those four rainfall intensity levels, respectively. The second part of research focuses on the estimation of significant wave height (Hₛ). A temporal convolutional network (TCN)-based model is proposed to retrieve Hₛ from X-band marine radar image sequences. Three types of features are first extracted from radar image sequences based on signal to noise ratio (SNR), ensemble empirical mode decomposition (EEMD), and GLCM methods, respectively. Then, feature vectors are input into the proposed TCN-based regression model to produce Hₛ estimation. Radar data are collected from a moving vessel at the East Coast of Canada, as well as simultaneously collected wave data from several wave buoys deployed nearby are used for model training and testing. After averaging, experimental results show that the TCN-based model further improves the Hₛ estimation accuracy, with reductions of RMSEs by 0.33 m and 0.10 m, respectively, compared to the SNR-based and the EEMD-based linear fitting methods. It has also been found that with the same feature extraction scheme, TCN outperforms other machine-learning based algorithms including support vector regression (SVR) and the convolutional gated recurrent unit (CGRU) network

    Ocean wind and wave parameter estimation from ship-borne x-band marine radar data

    Get PDF
    Ocean wind and wave parameters are important for the study of oceanography, on- and off-shore activities, and the safety of ship navigation. Conventionally, such parameters have been measured by in-situ sensors such as anemometers and buoys. During the last three decades, sea surface observation using X-band marine radar has drawn wide attention since marine radars can image both temporal and spatial variations of the sea surface. In this thesis, novel algorithms for wind and wave parameter retrieval from X-band marine radar data are developed and tested using radar, anemometer, and buoy data collected in a sea trial off the east coast of Canada in the North Atlantic Ocean. Rain affects radar backscatter and leads to less reliable wind parameters measurements. In this thesis, algorithms are developed to enable reliable wind parameters measurements under rain conditions. Firstly, wind directions are extracted from raincontaminated radar data using either a 1D or 2D ensemble empirical mode decomposition (EEMD) technique and are seen to compare favourably with an anemometer reference. Secondly, an algorithm based on EEMD and amplitude modulation (AM) analysis to retrieve wind direction and speed from both rain-free and rain-contaminated X-band marine radar images is developed and is shown to be an improvement over an earlier 1D spectral analysis-based method. For wave parameter measurements, an empirical modulation transfer function (MTF) is required for traditional spectral analysis-based techniques. Moreover, the widely used signal-to-noise ratio (SNR)-based method for significant wave height (HS) estimation may not always work well for a ship-borne X-band radar, and it requires external sensors for calibration. In this thesis, two methods are first presented for HS estimation from X-band marine radar data. One is an EEMD-based method, which enables satisfactory HS measurements obtained from a ship-borne radar. The other is a modified shadowingbased method, which enables HS measurements without the inclusion of external sensors. Furthermore, neither method requires the MTF. Finally, an algorithm based on the Radon transform is proposed to estimate wave direction and periods from X-band marine radar images with satisfactory results

    Study on Real-Time Ocean Wave Analysis Based on X-Band Radar Measurement Data

    Get PDF
    학위논문(석사) -- 서울대학교대학원 : 공과대학 조선해양공학과, 2023. 2. 김용환.해양 활동의 안전성 및 효율을 향상하기 위해 신뢰도 높은 파랑 정보의 획득이 요구됨에 따라 전 세계적으로 다양한 방식의 파랑 계측이 수행되고 있다. 이 중 해양 X-band 레이더는 넓은 영역의 파랑 정보를 동시에 계측할 수 있으므로 단시간의 계측을 통해 통계적으로 수렴도 높은 해양파 정보를 얻을 수 있다는 장점이 있다. 때문에, 다양한 선박 및 해양 구조물에서 해양 X-band 레이더를 활용하여 파랑 계측을 수행하고 있으며, 계측 기법의 고도화에 대한 다양한 논의가 진행되고 있다. 해양 레이더는 안테나에서 송신된 X-band 마이크로파와 해면상 잔물결 간의 Bragg 공진 현상에 의해 후방 산란되는 전자기파의 세기를 계측한다. 이러한 원격 계측 과정은 그림자, 기울임, 유체동역학적 효과 등 수많은 비물리적 변조 효과를 수반한다. 따라서, 레이더 이미지로부터 파랑 정보를 도출하기 위해서는 이미지 강도에 포함된 비물리적 성분을 제거하고 스펙트럼의 에너지를 유의파고에 따라 조정하는 파랑장 재구성 과정이 요구된다. 본 논문은 고도화된 파랑장 재구성 기법에 대한 연구를 다루고 있다. 제시된 전체 재구성 절차는 그림자 기반 유의파고 추정과 3D-FFT 기반 파랑장 재구성으로 구성되며, 각 해석 과정이 높은 연산 효율을 지니고 있다. 또한, 본 연구에서는 파랑장 재구성 기법의 정확도 향상을 위해 그림자 발생의 공간 통계적 특성을 엄밀하게 고려하였다. 이를 위해, 유의파고 추정 시 해면의 공간상 자기상관함수 및 평균표면경사의 직교성을 고려하였고, 파랑장 재구성 시 그림자 발생의 공간적 특성에 기인하는 불균일한 분산 분포에 대한 보정을 수행하였다. 본 논문에서 제시된 기법의 검증을 위해 합성 레이더 이미지와 실해역 레이더 이미지에 대해 파랑장 재구성을 수행하였다. 먼저, 다양한 해상 상태의 합성 레이더 이미지를 생성하여 해석에 활용하였고, 해상 상태에 따른 재구성 정확도의 의존성을 살펴보았다. 이를 통해, 다양한 해상 상태에서 그림자 효과에 대한 엄밀한 고려를 통해 파랑장 재구성 정확도를 향상할 수 있음을 확인하였다. 다음으로, 이어도 해양과학기지 및 기상 1호에서 계측된 실해역 레이더 이미지에 대한 유의파고 추정을 수행하였다. 그 결과, 실해역 데이터에 대하여 정확도 높은 유의파고 추정이 가능함을 확인하였다.It is required to obtain reliable wave information to improve the safety and efficiency of marine activities. Various methods for wave measurements are being carried out around the world. Among them, the marine X-band radar has the advantage that it can obtain statistically converged wave information based on short-time measurement. This is because the wave radar can simultaneously measure wave elevation data in a large area. Accordingly, marine X-band radars are installed on various ships and marine platforms to perform wave measurements. Diverse discussions on X-band radar-based wave field analysis techniques are also steadily underway. In general, incoherent marine radar measures the backscattered intensity due to Bragg scattering between X-band microwaves transmitted from the antenna and ripples on the sea surface. This remote sensing process entails numerous non-physical modulation effects, such as shadowing, tilting, and hydrodynamic effects. Therefore, a series of post-processing called wave-field reconstruction is required to retrieve wave information from marine radar images. The wave-field reconstruction procedure consists of removing the non-physical components from the measured spectrum, and adjusting the total spectral energy according to the significant wave height (HS). In this study, the advanced wave-field reconstruction technique is presented. The overall reconstruction procedure is comprised of the shadowing-based HS estimation and 3D-FFT-based wave-field reconstruction, and both of each analysis process have high computational efficiency. Thats why it is suitable for real-time wave-field analysis. To enhance the wave analysis, the statistical characteristics of the shadowing effect were rigorously considered. For this purpose, the spatial autocorrelation function of the ocean surface and the orthogonality of the mean surface slope were considered for HS estimation. Moreover, the uneven variance distribution owing to the spatial dependency of the shadowing effect was mitigated during the wave-field reconstruction. Wave-field reconstruction was applied to the synthetic and real radar images to verify the presented technique. The HS estimation and 3D-FFT-based wave-field reconstruction were performed for synthetic radar images corresponding to various states, and the dependence of this technique on the sea state was examined. As a result, it was confirmed that the reconstruction accuracy could be improved through the rigorous consideration of stochastic characteristics of the shadowing effect for all cases. Moreover, HS estimation was performed for real radar images collected from the Ieodo ocean research station and RV Gisang 1. In conclusion, a satisfactorily accurate HS estimation was also achieved.1. 서론 1 1.1 연구 배경 1 1.2 기존 연구 3 1.2.1 3D-FFT 기반 파랑장 재구성 3 1.2.2 유의파고 추정 5 1.3 연구 목표 및 주요 연구 내용 7 2. 파랑장 재구성 9 2.1 위상 분해 파랑장 재구성 문제 9 2.1.1 문제 정의 9 2.1.2 전체 해석 절차 11 2.2 유의파고 추정 13 2.2.1 그림자 영역 구분 13 2.2.2 Smith 함수 기반 표면 경사 추정 14 2.2.3 총표면경사 추정 18 2.2.4 유의파고 계산 19 2.3 3D-FFT 기반 파랑장 재구성 21 2.3.1 Mean-shift 변형 21 2.3.2 에너지 분포 보정 21 2.3.3 3차원 고속 푸리에 변환(3D-FFT) 23 2.3.4 필터링 23 2.3.5 변조 전달 함수(MTF) 24 3. 합성 레이더 이미지 해석 26 3.1 합성 레이더 이미지 생성 26 3.2 유의파고 추정 30 3.2.1 평균표면경사 추정 30 3.2.2 스펙트럼 해석 34 3.2.3 유의파고 추정 결과 36 3.3 파랑장 재구성 38 3.3.1 에너지 분포 보정 38 3.3.2 재구성 결과 40 4. 실해역 레이더 이미지 해석 45 4.1 데이터셋 정의 45 4.1.1 이어도 데이터셋 45 4.1.2 NIMS 데이터셋 46 4.2 유의파고 추정 결과 48 4.2.1 이어도 데이터셋 해석 결과 48 4.2.2 NIMS 데이터셋 해석 결과 53 5. 결론 57 6. 공학적 기여 및 향후 연구 59 참고문헌 61 부록 66 A.1 Smith 함수 유도 66 A.2 해면 평균표면경사의 물리적 특성 71석

    Automatic detection of signals by using artificial intelligence techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Premio a la Mejor Tesis Doctoral en Seguridad y Defensa por el Colegio Oficial de Ingenieros de Telecomunicación (COIT) y la Asociación Española de Ingenieros de Telecomunicación (AEIT) en 2013La detección automática de señales (blancos) en interferencia aditiva (clutter más ruido) es un problema no resuelto hoy en día. Muchos y diversos esquemas de detección son propuestos constantemente en revistas especializadas sobre temas de investigación radar y de procesado de señal. Esos esquemas son adaptados normalmente a la casuística del problema, es decir, a los blancos y al tipo de clutter presentes en esos experimentos. Es por ello que la tesis presentada a continuación busca proponer un esquema de detección que trabaje con altas prestaciones en distintos entornos. En esta tesis se pretende resolver dos tipos de problemas: uno centrado en la detección de blancos radar de tipo Swerling 0 en presencia de clutter sintético modelado con una distribución Weibull y ruido blanco Gaussiano; y otro centrado en la detección de barcos en movimiento a partir de imágenes radar provenientes de un radar marino comercial. Se ha comprobado que los datos reales están estadísticamente relacionados con los datos sintéticos simulados, lo cual permitirá proponer un único esquema de detección que trabaje en ambos casos. Teniendo en cuenta los problemas de detección planteados, se asumen varias premisas. Las imágenes radar generadas en entornos simulados tienen en cuenta una correlación temporal entre celdas consecutivas de la imagen y una distribución espacial constante de los parámetros estadísticos del clutter dentro de una misma imagen, pero variable de una imagen a otra. Dentro de este entorno simulado, se asumen distintos tamaños y formas de blanco. Estos entornos han sido simulados mediante el uso de los parámetros estadísticos del clutter descritos en la literatura. Comparando dichos entornos, se observa una gran disparidad en sus parámetros estadísticos, haciendo más difícil aún si cabe la tarea de proponer un detector radar que trabaje correctamente y con altas prestaciones en distintos entornos radar. Para resolver los problemas de detección planteados, se han considerado detectores radar utilizados habitualmente en la literatura. Así, se ha seleccionado como detector de referencia para el caso de trabajar con datos procedente de un radar coherente el detector de blanco conocido a priori (TSKAP: target sequence known a priori). Detectores basados en técnicas CFAR (constant false alarm rate) han sido elegidos para el caso de trabajar con datos procedentes de un radar incoherente. Por otro lado, se ha estudiado el uso de técnicas de inteligencia artificial (IA) para crear detectores que resuelvan los dos problemas de detección planteados. De las posibles técnicas de IA existentes en la literatura, se han elegido dos tipos de redes neuronales artificiales (RNAs): el perceptron multicapa (MLP: Multilayer perceptron) y las RNAs basadas en funciones de base radial (RBFNs: Radial basis function networks). Mediante este tipo de técnicas, se proponen nuevas estrategias de detección para los casos coherente e incoherente. Aparte de la contribución en el uso de técnicas de IA en temas de detección radar, se presenta otra contribución importante: el uso de nuevos modos de selección de celdas de una imagen para la mejora de las prestaciones del detector radar propuesto. Estos modos están basados en esquemas de selección con retardo (en una o dos dimensiones), dentro de los cuales se pueden elegir más celdas para poder realizar una mejor estimación de los parámetros del clutter que rodea al blanco. Además, el uso de estos modos de selección en dos dimensiones en detectores CFAR también puede ser considerado contribución ya que antes no se habían presentado resultados para los modos aquí propuestos. Los experimentos desarrollados consideran entornos simulados de mar, mar helado y tierra para el diseño y test de los detectores coherentes tomados como referencia y los basados en IA. En estos experimentos, se estudió la influencia de los siguientes parámetros durante el diseño de los detectores bajo estudio: las propiedades del clutter presente en las imágenes de los conjuntos de diseño (para entrenar RNAs y establecer el umbral de detección); los modos de selección; el número de celdas seleccionadas; así como el número de neuronas ocultas en las RNAs. A partir de estos estudios, se obtienen los valores de dichos parámetros, de tal forma que se obtienen altas prestaciones, mientras que se mantiene un coste computacional moderado en el detector propuesto. Una vez diseñados los detectores, éstos se testean utilizando un conjunto de datos de test no utilizado previamente. Este conjunto de test está compuesto por imágenes radar con distintas propiedades estadísticas para simular lo que ocurre en entornos reales. Las prestaciones observadas para este conjunto son ligeramente inferiores a los obtenidas en la etapa de diseño. Además, se observa que las prestaciones del detector para las distintas imágenes radar del con- junto, es decir, para distintos condiciones de clutter, presentan pequeñas variaciones. Esto nos indica un alto grado de robustez en los detectores cuando las condiciones de clutter cambian con el tiempo. Teniendo en cuenta estas pequeñas variaciones de las prestaciones del detector, podemos inferir que las mismas prestaciones presentadas aquí se pueden obtener cuando el detector diseñado procese nuevas imágenes radar en el futuro. Por otro lado, se han realizado estudios similares para el caso de detectores incoherentes en entornos simulados de mar, mar helado y tierra. De estos estudios, destacamos las diferencias que existen entre los resultados obtenidos por los detectores coherentes e incoherentes en entornos simulados de clutter de mar. La primera diferencia que se observa es que las prestaciones del detector incoherente son ligeramente menores que las obtenidas por el coherente, aspecto que era de esperar porque sólo considera la información de amplitud. La segunda diferencia observada es la alta reducción de coste computacional que se obtiene, siendo esto debido a que en estos detectores se utiliza menos información a la entrada. Los resultados obtenidos para los entornos simulados de mar helado y tierra no han sido incorporados en la memoria de la tesis porque tanto las prestaciones como el coste computacional obtenidos son similares a los obtenidos para el caso de entornos marinos. Finalmente, se han diseñado y testeado detectores incoherentes para trabajar con imágenes provenientes de un radar marino comercial situado en la plataforma de investigación alemana FINO-1, la cual se encuentra localizada en el mar del Norte (Alemania). Antes de proceder con el diseño de estos detectores, se comprobó que las medidas de clutter contenidas en las imágenes radar seguían una distribución Weibull, tal y como se asumió en el entorno simulado de mar. Acto seguido a esta comprobación, se procedió con el ajuste de los parámetros de cada uno de los detectores bajo estudio (CFAR y basados en técnicas de IA) para obtener las mejores prestaciones posibles, así como un coste computacional moderado. Una vez diseñados los detectores, se procedió a testearlos, llegando a las mismas conclusiones a las que se llegó para el caso sintético: alta robustez frente a cambios en las condiciones de diseño y baja pérdida de prestaciones cuando se procesan nuevas imágenes radar. También se muestra cual es el coste computacional de la configuración seleccionada en los casos de detectores incoherentes basados en MLPs y RBFNs, así como la velocidad de computo necesaria para poder procesar imágenes radar en tiempo real. A partir de estos resultados, se llega a la conclusión final de que como las unidades de procesado disponibles en el mercado permiten trabajar a las velocidades que necesita el sistema, el procesado en tiempo real está garantizado. A partir del análisis de las prestaciones obtenidas para los distintos casos de estudio abordados en la tesis, se llega a la siguiente conclusión general: los detectores basados en técnicas de IA mejoran las prestaciones obtenidas por los detectores de referencia seleccionados de la literatura en todos los casos de estudio presentados. Ésta conclusión se obtiene para radares que trabajan a distintas frecuencias, con distintas resoluciones y con receptores diferentes (coherentes e incoherentes). Además, esta conclusión también es independiente del entorno radar bajo estudio (mar, mar helado y tierra)

    Automatic detection of signals by using artificial intelligence techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Premio a la Mejor Tesis Doctoral en Seguridad y Defensa por el Colegio Oficial de Ingenieros de Telecomunicación (COIT) y la Asociación Española de Ingenieros de Telecomunicación (AEIT) en 2013La detección automática de señales (blancos) en interferencia aditiva (clutter más ruido) es un problema no resuelto hoy en día. Muchos y diversos esquemas de detección son propuestos constantemente en revistas especializadas sobre temas de investigación radar y de procesado de señal. Esos esquemas son adaptados normalmente a la casuística del problema, es decir, a los blancos y al tipo de clutter presentes en esos experimentos. Es por ello que la tesis presentada a continuación busca proponer un esquema de detección que trabaje con altas prestaciones en distintos entornos. En esta tesis se pretende resolver dos tipos de problemas: uno centrado en la detección de blancos radar de tipo Swerling 0 en presencia de clutter sintético modelado con una distribución Weibull y ruido blanco Gaussiano; y otro centrado en la detección de barcos en movimiento a partir de imágenes radar provenientes de un radar marino comercial. Se ha comprobado que los datos reales están estadísticamente relacionados con los datos sintéticos simulados, lo cual permitirá proponer un único esquema de detección que trabaje en ambos casos. Teniendo en cuenta los problemas de detección planteados, se asumen varias premisas. Las imágenes radar generadas en entornos simulados tienen en cuenta una correlación temporal entre celdas consecutivas de la imagen y una distribución espacial constante de los parámetros estadísticos del clutter dentro de una misma imagen, pero variable de una imagen a otra. Dentro de este entorno simulado, se asumen distintos tamaños y formas de blanco. Estos entornos han sido simulados mediante el uso de los parámetros estadísticos del clutter descritos en la literatura. Comparando dichos entornos, se observa una gran disparidad en sus parámetros estadísticos, haciendo más difícil aún si cabe la tarea de proponer un detector radar que trabaje correctamente y con altas prestaciones en distintos entornos radar. Para resolver los problemas de detección planteados, se han considerado detectores radar utilizados habitualmente en la literatura. Así, se ha seleccionado como detector de referencia para el caso de trabajar con datos procedente de un radar coherente el detector de blanco conocido a priori (TSKAP: target sequence known a priori). Detectores basados en técnicas CFAR (constant false alarm rate) han sido elegidos para el caso de trabajar con datos procedentes de un radar incoherente. Por otro lado, se ha estudiado el uso de técnicas de inteligencia artificial (IA) para crear detectores que resuelvan los dos problemas de detección planteados. De las posibles técnicas de IA existentes en la literatura, se han elegido dos tipos de redes neuronales artificiales (RNAs): el perceptron multicapa (MLP: Multilayer perceptron) y las RNAs basadas en funciones de base radial (RBFNs: Radial basis function networks). Mediante este tipo de técnicas, se proponen nuevas estrategias de detección para los casos coherente e incoherente. Aparte de la contribución en el uso de técnicas de IA en temas de detección radar, se presenta otra contribución importante: el uso de nuevos modos de selección de celdas de una imagen para la mejora de las prestaciones del detector radar propuesto. Estos modos están basados en esquemas de selección con retardo (en una o dos dimensiones), dentro de los cuales se pueden elegir más celdas para poder realizar una mejor estimación de los parámetros del clutter que rodea al blanco. Además, el uso de estos modos de selección en dos dimensiones en detectores CFAR también puede ser considerado contribución ya que antes no se habían presentado resultados para los modos aquí propuestos. Los experimentos desarrollados consideran entornos simulados de mar, mar helado y tierra para el diseño y test de los detectores coherentes tomados como referencia y los basados en IA. En estos experimentos, se estudió la influencia de los siguientes parámetros durante el diseño de los detectores bajo estudio: las propiedades del clutter presente en las imágenes de los conjuntos de diseño (para entrenar RNAs y establecer el umbral de detección); los modos de selección; el número de celdas seleccionadas; así como el número de neuronas ocultas en las RNAs. A partir de estos estudios, se obtienen los valores de dichos parámetros, de tal forma que se obtienen altas prestaciones, mientras que se mantiene un coste computacional moderado en el detector propuesto. Una vez diseñados los detectores, éstos se testean utilizando un conjunto de datos de test no utilizado previamente. Este conjunto de test está compuesto por imágenes radar con distintas propiedades estadísticas para simular lo que ocurre en entornos reales. Las prestaciones observadas para este conjunto son ligeramente inferiores a los obtenidas en la etapa de diseño. Además, se observa que las prestaciones del detector para las distintas imágenes radar del con- junto, es decir, para distintos condiciones de clutter, presentan pequeñas variaciones. Esto nos indica un alto grado de robustez en los detectores cuando las condiciones de clutter cambian con el tiempo. Teniendo en cuenta estas pequeñas variaciones de las prestaciones del detector, podemos inferir que las mismas prestaciones presentadas aquí se pueden obtener cuando el detector diseñado procese nuevas imágenes radar en el futuro. Por otro lado, se han realizado estudios similares para el caso de detectores incoherentes en entornos simulados de mar, mar helado y tierra. De estos estudios, destacamos las diferencias que existen entre los resultados obtenidos por los detectores coherentes e incoherentes en entornos simulados de clutter de mar. La primera diferencia que se observa es que las prestaciones del detector incoherente son ligeramente menores que las obtenidas por el coherente, aspecto que era de esperar porque sólo considera la información de amplitud. La segunda diferencia observada es la alta reducción de coste computacional que se obtiene, siendo esto debido a que en estos detectores se utiliza menos información a la entrada. Los resultados obtenidos para los entornos simulados de mar helado y tierra no han sido incorporados en la memoria de la tesis porque tanto las prestaciones como el coste computacional obtenidos son similares a los obtenidos para el caso de entornos marinos. Finalmente, se han diseñado y testeado detectores incoherentes para trabajar con imágenes provenientes de un radar marino comercial situado en la plataforma de investigación alemana FINO-1, la cual se encuentra localizada en el mar del Norte (Alemania). Antes de proceder con el diseño de estos detectores, se comprobó que las medidas de clutter contenidas en las imágenes radar seguían una distribución Weibull, tal y como se asumió en el entorno simulado de mar. Acto seguido a esta comprobación, se procedió con el ajuste de los parámetros de cada uno de los detectores bajo estudio (CFAR y basados en técnicas de IA) para obtener las mejores prestaciones posibles, así como un coste computacional moderado. Una vez diseñados los detectores, se procedió a testearlos, llegando a las mismas conclusiones a las que se llegó para el caso sintético: alta robustez frente a cambios en las condiciones de diseño y baja pérdida de prestaciones cuando se procesan nuevas imágenes radar. También se muestra cual es el coste computacional de la configuración seleccionada en los casos de detectores incoherentes basados en MLPs y RBFNs, así como la velocidad de computo necesaria para poder procesar imágenes radar en tiempo real. A partir de estos resultados, se llega a la conclusión final de que como las unidades de procesado disponibles en el mercado permiten trabajar a las velocidades que necesita el sistema, el procesado en tiempo real está garantizado. A partir del análisis de las prestaciones obtenidas para los distintos casos de estudio abordados en la tesis, se llega a la siguiente conclusión general: los detectores basados en técnicas de IA mejoran las prestaciones obtenidas por los detectores de referencia seleccionados de la literatura en todos los casos de estudio presentados. Ésta conclusión se obtiene para radares que trabajan a distintas frecuencias, con distintas resoluciones y con receptores diferentes (coherentes e incoherentes). Además, esta conclusión también es independiente del entorno radar bajo estudio (mar, mar helado y tierra)

    Developing a remote sensing system based on X-band radar technology for coastal morphodynamics study

    Get PDF
    New data processing techniques are proposed for the assessment of scopes and limitations from radar-derived sea state parameters, coastline evolution and water depth estimates. Most of the raised research is focused on Colombian Caribbean coast and the Western Mediterranean Sea. First, a novel procedure to mitigate shadowing in radar images is proposed. The method compensates distortions introduced by the radar acquisition process and the power decay of the radar signal along range applying image enhancement techniques through a couple of pre-processing steps based on filtering and interpolation. Results reveal that the proposed methodology reproduces with high accuracy the sea state parameters in nearshore areas. The improvement resulting from the proposed method is assessed in a coral reef barrier, introducing a completely novel use for X-Band radar in coastal environments. So far, wave energy dissipation on a coral reef barrier has been studied by a few in-situ sensors placed in a straight line, perpendicular to the coastline, but never been described using marine radars. In this context, marine radar images are used to describe prominent features of coral reefs, including the delineation of reef morphological structure, wave energy dissipation and wave transformation processes in the lagoon of San Andres Island barrier-reef system. Results show that reef attenuates incident waves by approximately 75% due to both frictional and wave breaking dissipation, with an equivalent bottom roughness of 0.20 m and a wave friction factor of 0.18. These parameters are comparable with estimates reported in other shallow coral reef lagoons as well as at meadow canopies, obtained using in-situ measurements of wave parameters.DoctoradoDoctor en Ingeniería Eléctrica y Electrónic
    corecore