4 research outputs found

    Changing representation of curves and surfaces: exact and approximate methods

    Get PDF
    Το κύριο αντικείμενο μελέτης στην παρούσα διατριβή είναι η αλλαγή αναπαράστασης γεωμετρικών αντικειμένων από παραμετρική σε αλγεβρική (ή πεπλεγμένη) μορφή. Υπολογίζουμε την αλγεβρική εξίσωση παρεμβάλλοντας τους άγνωστους συντελεστές του πολυωνύμου δεδομένου ενός υπερσυνόλου των μονωνύμων του. Το τελευταίο υπολογίζεται απο το Newton πολύτοπο της αλγεβρικής εξίσωσης που υπολογίζεται από μια πρόσφατη μέθοδο πρόβλεψης του συνόλου στήριξης της εξίσωσης. H μέθοδος πρόβλεψης του συνόλου στήριξης βασίζεται στην αραιή (ή τορική) απαλοιφή: το πολύτοπο υπολογίζεται από το Newton πολύτοπο της αραιής απαλοίφουσας αν θεωρίσουμε την παραμετροποίηση ως πολυωνυμικό σύστημα. Στα μονώνυμα που αντιστοιχούν στα ακέραια σημεία του Newton πολυτόπου δίνονται τιμές ώστε να σχηματίσουν έναν αριθμητικό πίνακα. Ο πυρήνα του πίνακα αυτού, διάστασης 1 σε ιδανική περίπτωση, περιέχει τους συντελεστές των μονωνύμων στην αλγεβρική εξίσωση. Υπολογίζουμε τον πυρήνα του πίνακα είτε συμβολικά είτε αριθμητικά εφαρμόζοντας την μέθοδο του singular value decomposition (SVD). Προτείνουμε τεχνικές για να διαχειριστούμε την περίπτωση ενός πολυδιάστατου πυρήνα το οποίο εμφανίζεται όταν το προβλεπόμενο σύνολο στήριξης είναι ένα υπερσύνολο του πραγματικού. Αυτό δίνει έναν αποτελεσματικό ευαίσθητο-εξόδου αλγόριθμο υπολογισμού της αλγεβρικής εξίσωσης. Συγκρίνουμε διαφορετικές προσεγγίσεις κατασκευής του πίνακα μέσω των λογισμικών Maple και SAGE. Στα πειράματά μας χρησιμοποιήθηκαν ρητές καμπύλες και επιφάνειες καθώς και NURBS. Η μέθοδός μας μπορεί να εφαρμοστεί σε πολυώνυμα ή ρητές παραμετροποιήσεις επίπεδων καμπυλών ή (υπερ)επιφανειών οποιασδήποτε διάστασης συμπεριλαμβανομένων και των περιπτώσεων με παραμετροποίηση σεσημεία βάσης που εγείρουν σημαντικά ζητήματα για άλλες μεθόδους αλγεβρικοποίησης. Η μέθοδος έχει τον εξής περιορισμό: τα γεωμετρικά αντικείμενα πρέπει να αναπαριστώνται από βάσεις μονωνύμων που στην περίπτωση τριγωνομετρικών παραμετροποιήσεων θα πρέπει να μπορούν να μετασχηματιστούν σε ρητές συναρτήσεις. Επιπλέον η τεχνική που προτείνουμε μπορεί να εφαρμοστεί σε μη γεωμετρικά προβλήματα όπως ο υπολογισμόςτης διακρίνουσας ενός πολυωνύμου με πολλές μεταβλητές ή της απαλοίφουσας ενός συστήματος πολυωνύμων με πολλές μεταβλητές.The main object of study in our dissertation is the representation change of the geometric objects from the parametric form to implicit. We compute the implicit equation interpolating the unknown coefficients of the implicit polynomial given a superset of its monomials. The latter is derived from the Newton polytope of the implicit equation obtained by the recently developed method for support prediction. The support prediction method we use relies on sparse (or toric) elimination: the implicit polytope is obtained from the Newton polytope of the sparse resultant of the system in parametrization, represented as polynomials. The monomials that correspond to the lattice points of the Newton polytope are suitably evaluated to build a numeric matrix, ideally of corank 1. Its kernel contains their coefficients in the implicit equation. We compute kernel of the matrix either symbolically, or numerically, applying singular value decomposition (SVD). We propose techniques for handling the case of the multidimensional kernel space, caused by the predicted support being a superset of the actual. This yields an efficient, output-sensitive algorithm for computing the implicit equation. We compare different approaches for constructing the matrix in Maple and SAGE software. In our experiments we have used classical algebraic curves and surfaces as well as NURBS. Our method can be applied to polynomial or rational parametrizations of planar curves or (hyper)surfaces of any dimension including cases of parameterizations with base points which raise important issues for other implicitization methods. The method has its limits: geometric objects have to be presented using monomial basis; in the case of trigonometric parametrizations they have to be convertible to rational functions. Moreover, the proposed technique can be applied for nongeometric problems such as the computation of the discriminant of a multivariate polynomial or the resultant of a system of multivariate polynomials

    The algebraic square peg problem

    Get PDF
    The square peg problem asks whether every continuous curve in the plane that starts and ends at the same point without self-intersecting contains four distinct corners of some square. Toeplitz conjectured in 1911 that this is indeed the case. Hundred years later we only have partial results for curves with additional smoothness properties. The contribution of this thesis is an algebraic variant of the square peg problem. By casting the set of squares inscribed on an algebraic plane curve as a variety and applying Bernshtein's Theorem we are able to count the number of such squares. An algebraic plane curve defined by a polynomial of degree m inscribes either an infinite amount of squares, or at most (m4 - 5m2 + 4m)= 4 squares. Computations using computer algebra software lend evidence to the claim that this upper bound is sharp for generic curves. Earlier work on Toeplitz's conjecture has shown that generically an odd number of squares is inscribed on a smooth enough Jordan curve. Examples of real cubics and quartics suggest that there is a similar parity condition on the number of squares inscribed on some topological types of algebraic plane curves that are not Jordan curves. Thus we are led to conjecture that algebraic plane curves homeomorphic to the real line inscribe an even number of squares

    Ahlfors circle maps and total reality: from Riemann to Rohlin

    Full text link
    This is a prejudiced survey on the Ahlfors (extremal) function and the weaker {\it circle maps} (Garabedian-Schiffer's translation of "Kreisabbildung"), i.e. those (branched) maps effecting the conformal representation upon the disc of a {\it compact bordered Riemann surface}. The theory in question has some well-known intersection with real algebraic geometry, especially Klein's ortho-symmetric curves via the paradigm of {\it total reality}. This leads to a gallery of pictures quite pleasant to visit of which we have attempted to trace the simplest representatives. This drifted us toward some electrodynamic motions along real circuits of dividing curves perhaps reminiscent of Kepler's planetary motions along ellipses. The ultimate origin of circle maps is of course to be traced back to Riemann's Thesis 1851 as well as his 1857 Nachlass. Apart from an abrupt claim by Teichm\"uller 1941 that everything is to be found in Klein (what we failed to assess on printed evidence), the pivotal contribution belongs to Ahlfors 1950 supplying an existence-proof of circle maps, as well as an analysis of an allied function-theoretic extremal problem. Works by Yamada 1978--2001, Gouma 1998 and Coppens 2011 suggest sharper degree controls than available in Ahlfors' era. Accordingly, our partisan belief is that much remains to be clarified regarding the foundation and optimal control of Ahlfors circle maps. The game of sharp estimation may look narrow-minded "Absch\"atzungsmathematik" alike, yet the philosophical outcome is as usual to contemplate how conformal and algebraic geometry are fighting together for the soul of Riemann surfaces. A second part explores the connection with Hilbert's 16th as envisioned by Rohlin 1978.Comment: 675 pages, 199 figures; extended version of the former text (v.1) by including now Rohlin's theory (v.2

    Computer Science for Continuous Data:Survey, Vision, Theory, and Practice of a Computer Analysis System

    Get PDF
    Building on George Boole's work, Logic provides a rigorous foundation for the powerful tools in Computer Science that underlie nowadays ubiquitous processing of discrete data, such as strings or graphs. Concerning continuous data, already Alan Turing had applied "his" machines to formalize and study the processing of real numbers: an aspect of his oeuvre that we transform from theory to practice.The present essay surveys the state of the art and envisions the future of Computer Science for continuous data: natively, beyond brute-force discretization, based on and guided by and extending classical discrete Computer Science, as bridge between Pure and Applied Mathematics
    corecore