14 research outputs found

    Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements

    Get PDF
    This book is a reprint of the Special Issue entitled "Statistical and Machine Learning Models for Remote Sensing Data Mining - Recent Advancements" that was published in Remote Sensing, MDPI. It provides insights into both core technical challenges and some selected critical applications of satellite remote sensing image analytics

    Retrieval of aerosol optical depth from MODIS data at 500 m resolution compared with ground measurement in the state of Indiana

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Objective: "The purpose of this research is: Study the use of Moderate Resolution Imaging Spectroradiometer (MODIS) data in retrieving the aerosol optical depth (AOD) over Indiana State at high resolution of 500 meters. Examine the potential of using the resulted AOD data as an indicator of particulate air pollution by comparing the satellite derived AOD data with the ground measurements (provided from the continuous air monitors available over the study area). If an association should be found, AOD data would be used to map particulate matter (PM) concentration. Assess current and future ambient concentrations of air pollutants in the State of Indiana using the AOD.

    Satellite-based PM2.5 Exposure Estimation and Health Impacts over China

    Get PDF
    Exposure to suspended fine particulate matter (PM2.5) has been proven to adversely impact public health through increased risk of cardiovascular and respiratory mortality. Assessing health impacts of PM2.5 and its long-term variations requires accurate estimates of large-scale exposure data. Such data include mass concentration and particle size, the latter of which may be an effect modifier on PM2.5 attributable health risks. The availability of these exposure data, however, is limited by sparse ground-level monitoring networks. In this dissertation, an optical-mass relationship was first developed based on aerosol microphysical characteristics for ground-level PM2.5 retrieval. This method quantifies PM2.5 mass concentrations with a theoretical basis, which can simultaneously estimate large-scale particle size. The results demonstrate the effectiveness and applicability of the proposed method and reveal the spatiotemporal distribution of PM2.5 over China. To explore the spatial variability and population exposure, particle radii of PM2.5 are then derived using the developed theoretical relationship along with a statistical model for a better performance. The findings reveal the prevalence of exposure to small particles (i.e. PM1), identify the need for in-situ measurements of particle size, and motivate further research to investigate the effects of particle size on health outcomes. Finally, the long-term impacts of PM2.5 on health and environmental inequality are assessed by using the satellite-retrieved PM2.5 estimates over China during 2005-2017. Premature mortality attributable to PM2.5 exposure increased by 31% from 2005 to 2017. For some causes of death, the burden fell disproportionately on provinces with low-to-middle GDP per capita. As a whole, this work contributes to bridging satellite remote sensing and long-term exposure studies and sheds light on an ongoing need to understand the effects of PM2.5, including both concentrations and other particle characteristics, on human health

    Transport of Po Valley aerosol pollution to the northwestern Alps – Part 1: Phenomenology

    Get PDF
    Mountainous regions are often considered pristine environments; however they can be affected by pollutants emitted in more populated and industrialised areas, transported by regional winds. Based on experimental evidence, further supported by modelling tools, here we demonstrate and quantify the impact of air masses transported from the Po Valley, a European atmospheric pollution hotspot, to the northwestern Alps. This is achieved through a detailed investigation of the phenomenology of near-range (a few hundred kilometres), trans-regional transport, exploiting synergies of multi-sensor observations mainly focussed on particulate matter. The explored dataset includes vertically resolved data from atmospheric profiling techniques (automated lidar ceilometers, ALCs), vertically integrated aerosol properties from ground (sun photometer) and space, and in situ measurements (PM10 and PM2.5, relevant chemical analyses, and aerosol size distribution). During the frequent advection episodes from the Po basin, all the physical quantities observed by the instrumental setup are found to significantly increase: the scattering ratio from ALC reaches values &gt;30, aerosol optical depth (AOD) triples, surface PM10 reaches concentrations &gt;100&thinsp;µg m−3 even in rural areas, and contributions to PM10 by secondary inorganic compounds such as nitrate, ammonium, and sulfate increase up to 28&thinsp;%, 8&thinsp;%, and 17&thinsp;%, respectively. Results also indicate that the aerosol advected from the Po Valley is hygroscopic, smaller in size, and less light-absorbing compared to the aerosol type locally emitted in the northwestern Italian Alps. In this work, the phenomenon is exemplified through detailed analysis and discussion of three case studies, selected for their clarity and relevance within the wider dataset, the latter being fully exploited in a companion paper quantifying the impact of this phenomenology over the long-term (Diémoz et al., 2019). For the three case studies investigated, a high-resolution numerical weather prediction model (COSMO) and a Lagrangian tool (LAGRANTO) are employed to understand the meteorological mechanisms favouring transport and to demonstrate the Po Valley origin of the air masses. In addition, a chemical transport model (FARM) is used to further support the observations and to partition the contributions of local and non-local sources. Results show that the simulations are important to the understanding of the phenomenon under investigation. However, in quantitative terms, modelled PM10 concentrations are 4–5 times lower than the ones retrieved from the ALC and maxima are anticipated in time by 6–7&thinsp;h. Underestimated concentrations are likely mainly due to deficiencies in the emission inventory and to water uptake of the advected particles not fully reproduced by FARM, while timing mismatches are likely an effect of suboptimal simulation of up-valley and down-valley winds by COSMO. The advected aerosol is shown to remarkably degrade the air quality of the Alpine region, with potential negative effects on human health, climate, and ecosystems, as well as on the touristic development of the investigated area. The findings of the present study could also help design mitigation strategies at the trans-regional scale in the Po basin and suggest an observation-based approach to evaluate the outcome of their implementation.</p

    Atmospheric Research 2018 Technical Highlights

    Get PDF
    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earths atmosphere and the influence of solar variability on the Earths climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions

    Soil erosion modelling as a tool for future land management and conservation planning

    Get PDF
    Maintaining future agricultural productivity and ensuring soil security is of global concern and requires evidence-based management practices. Moreover, understanding where and when land is at risk of erosion is a fundamental step to combatting future soil loss and reach Land Degradation Neutrality (LDN). However, this is a difficult task because of the high spatial and temporal variability of the controlling factors involved. Therefore, tools investigating the impact and frequency of extreme erosive events are crucial for land managers and policymakers to apply corrective measures for better erosion management in the future. While the utility of using wind and water erosion models for management is well established, there is a paucity of work on the impact of climate change and extreme environmental conditions (e.g. wildfires) on soil erosion by wind and water simultaneously. Both erosion types are controlled by different environmental variable that vary highly in space and time. Therefore, the overarching aim of this study was to develop a joint wind-water erosion modelling method and demonstrate the utility of this approach to identify (1) the spatio-temporal variability of extreme erosion events in the South Australian agricultural zone (Australia) and (2) assess the likely increase of this variability in the face of climate change and the recurrence of wildfires. To fulfil the aim of the research project, we adapted two state-of-the-art wind and water (hillslope) erosion models to integrate modern high-resolution datasets for spatial and temporal analysis of erosion. The adaptation of these models to local conditions and the use of high-resolution datasets was essential to ensure reliable erosion assessment. First, we applied these models separately in the Eyre Peninsula and Mid-North agricultural regions. We evaluated the spatio-temporal variability of extreme erosion events between 2001 and 2017 and described the complex interactions between each erosional process and their influencing factors (e.g. soil types, climate conditions, and vegetation cover). Hillslope erosion was very low for most of the Eyre Peninsula; however, a large proportion of the central Mid-North region frequently recorded severe erosion (> 0.022 t ha-1) two to three months per year, for most of the years in the time-series. The most severe erosion events were primarily driven by topography, low ground cover ( 500 MJ mm ha-1 h-1). Average annual wind erosion was very low and comparable in the two regions. Nonetheless, most of the west coast of the Eyre Peninsula frequently registered severe erosion (> 0.000945 t ha-1 or 0.945 kg ha-1) two to three months per year, for most of the years. The most severe erosion events were largely driven by the soil type (sandy soils), recurring low ground cover ( 68 km h-1). We identified that erosion severity was low for the vast majority of the study area, while 4% and 9% of the total area suffered severe erosion by water and wind respectively, demonstrating an extreme spatial and temporal skewness of soil erosion processes. Then we combined the modelling outputs from the wind and water erosion models and tested the models’ response to major wildfire events. This research demonstrated how erosion modelling could be used to predict the impact of severe wildfire events on soil erosion. The two models satisfactorily captured the spatial and temporal variability of post-fire erosion. However, a very small fraction of the region (0.7%) was severely impacted by both wind and water erosion. We observed that soil erosion increased immediately after the wildfires or within the first six months for the ten fire-affected regions. For three of the wildfire events, the models showed an increase in wind and water erosion in consecutive months or at the same time. These results highlighted the importance to consider wind and water erosion simultaneously for post-fire erosion assessment in dryland agricultural regions. Finally, we had the rare opportunity to assess the impact of a catastrophic wildfire event on wind erosion in an agricultural landscape by examining the influence of unburnt stubble patches on adjacent burnt or bare plots using a spatio-temporal sampling design. The field study allowed a quantitative assessment of spatial and temporal patterns of wind erosion and sediment transport after a catastrophic wildfire event. It showed very high levels of spatial variability of erosion processes between burnt and bare patches and demonstrated how measuring field-scale sediment transport could complement fine-scale experimental studies to assess environmental processes at the field scale. This research highlights the utility of erosion models to inform corrective measures for future land management. We have implemented tools that allow a realistic assessment of the influence of climate change and extreme environmental conditions scenarios on soil erosion for a wide range of land cover over large regions. Here, the models enabled the identification of the relative post-fire wind or water erosion risk in dryland agricultural landscapes, making them particularly useful for land management under future uncertainty. Spatial patterns compared well with previous modelling approaches and underpinned the benefit of erosion models to assess spatial differences in erosion risk and evaluate corrective measures at the regional scale. However, modelled soil erosion magnitudes strongly depend on how the influence of soils is implemented in the models, making it difficult to set absolute quantitative soil loss targets for land management. The thesis has provided a proof of concept of the approach for South Australia. However, all input data can be freely sourced Australia-wide and similar dataset are available globally.Thesis (Ph.D.) -- University of Adelaide, School of Biological Sciences, 202

    Atmospheric Research 2013 Technical Highlights

    Get PDF
    Welcome to the Atmospheric Research 2013 Atmospheric Research Highlights report. This report, as before, is intended for a broad audience. Our readers include colleagues within NASA, scientists outside the Agency, science graduate students, and members of the general public. Inside are descriptions of atmospheric research science highlights and summaries of our education and outreach accomplishments for calendar year 2013.This report covers research activities from the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office under the Office of Deputy Director for Atmospheres (610AT), Earth Sciences Division in the Sciences and Exploration Directorate of NASAs Goddard Space Flight Center

    Atmospheric Research 2016 Technical Highlights

    Get PDF
    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the Earth Sciences Division in atmospheric science research. Figure 1.1 shows the 22-year record of peer-reviewed publications and proposals among the various laboratories

    Atmospheric Research 2014 Technical Highlights

    Get PDF
    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Division's goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earth's atmosphere and the influence of solar variability on the Earth's climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote-sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions. Instrument scientists conceive, design, develop, and implement ultraviolet, infrared, optical, radar, laser, and lidar technology to remotely sense the atmosphere. Members of the various Laboratories conduct field measurements for satellite sensor calibration and data validation, and carry out numerous modeling activities. These modeling activities include climate model simulations, modeling the chemistry and transport of trace species on regional-to-global scales, cloud resolving models, and developing the next-generation Earth system models. Satellite missions, field campaigns, peer-reviewed publications, and successful proposals are essential at every stage of the research process to meeting our goals and maintaining leadership of the Earth Sciences Division in atmospheric science research. Figure 1.1 shows the 20-year record of peer-reviewed publications and proposals among the various Laboratories. This data shows that the scientific work being conducted in the Laboratories is competitive with the work being done elsewhere in universities and other government agencies. The office of Deputy Director for Atmospheric Research will strive to maintain this record by rigorously monitoring and promoting quality while emphasizing coordination and integration among atmospheric disciplines. Also, an appropriate balance will be maintained between the scientists' responsibility for large collaborative projects and missions and their need to carry out active science research as a principal investigator. This balance allows members of the Laboratories to improve their scientific credentials, and develop leadership potentials. Interdisciplinary research is carried out in collaboration with other laboratories and research groups within the Earth Sciences Division, across the Sciences and Exploration Directorate, and with partners in universities and other government agencies. Members of the Laboratories interact with the general public to support a wide range of interests in the atmospheric sciences. Among other activities, the Laboratories raise the public's awareness of atmospheric science by presenting public lectures and demonstrations, by making scientific data available to wide audiences, by teaching, and by mentoring students and teachers. The Atmosphere Laboratories make substantial efforts to attract and recruit new scientists to the various areas of atmospheric research. We strongly encourage the establishment of partnerships with Federal and state agencies that have operational responsibilities to promote the societal application of our science products. This report describes our role in NASA's mission, provides highlights of our research scope and activities, and summarizes our scientists' major accomplishments during calendar year 2014. The composition of the organization is shown in Figure 1.2 for each code. This report is published in a printed version with an electronic version on our atmospheres Web site, http://atmospheres.gsfc.nasa.gov/
    corecore