1,253 research outputs found

    Feature-based generation of pervasive systems architectures utilizing software product line concepts

    Get PDF
    As the need for pervasive systems tends to increase and to dominate the computing discipline, software engineering approaches must evolve at a similar pace to facilitate the construction of such systems in an efficient manner. In this thesis, we provide a vision of a framework that will help in the construction of software product lines for pervasive systems by devising an approach to automatically generate architectures for this domain. Using this framework, designers of pervasive systems will be able to select a set of desired system features, and the framework will automatically generate architectures that support the presence of these features. Our approach will not compromise the quality of the architecture especially as we have verified that by comparing the generated architectures to those manually designed by human architects. As an initial step, and in order to determine the most commonly required features that comprise the widely most known pervasive systems, we surveyed more than fifty existing architectures for pervasive systems in various domains. We captured the most essential features along with the commonalities and variabilities between them. The features were categorized according to the domain and the environment that they target. Those categories are: General pervasive systems, domain-specific, privacy, bridging, fault-tolerance and context-awareness. We coupled the identified features with well-designed components, and connected the components based on the initial features selected by a system designer to generate an architecture. We evaluated our generated architectures against architectures designed by human architects. When metrics such as coupling, cohesion, complexity, reusability, adaptability, modularity, modifiability, packing density, and average interaction density were used to test our framework, our generated architectures were found comparable, if not better than the human generated architectures

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    Research Issues in Ad-Hoc Distributed Personal Networking

    Get PDF
    This paper discusses the research issues that need to be addressed in order to create a personal distributed environment where people interact with various companion, embedded, or invisible computers not only in their close vicinity but potentially anywhere. These systems are called personal networks (PNs). They constitute a category of distributed systems with very specific characteristics. They are configured in an ad hoc fashion, as the opportunity and the demand arise, to support personal applications. PNs consist of communicating clusters of personal digital devices, devices shared with other people and even infrastructure-based systems. At the heart of a PN is a core Personal Area Network (PAN), which is physically associated with the owner of the PN. Unlike the present PANs that have a geographically limited coverage, the Personal Operating Space, PNs have an unrestricted geographical span, and incorporate devices into the personal environment regardless of their geographic location. In order to do this they need the services of infrastructure-based networks and ad-hoc networks to extend their reach. A PN extends and complements the concept of pervasive computing. We show that PNs introduce new design challenges due to the heterogeneity of the involved technologies, the need for self-organization, the dynamics of the system composition, the application-driven nature, the co-operation with infrastructure-based networks, and the security hazards. We discuss the impact of these problems on network design, assess present and proposed solutions, and identify the research issues

    Security for Rural Public Computing

    Get PDF
    Current research on securing public computing infrastructure like Internet kiosks has focused on the use of smartphones to establish trust in a computing platform or to offload the processing of sensitive information, and the use of new cryptosystems such as Hierarchical Identity-based Encryption (HIBE) to protect kiosk user data. Challenges posed by rural kiosks, specifically (a) the absence of specialized hardware features such as Trusted Platform Modules (TPMs) or a modifiable BIOS in older recycled PCs, (b) the potential use of periodically disconnected links between kiosks and the Internet, (c) the absence of a production-ready implementation of HIBE and (d) the limited availability of smartphones in most developing regions make these approaches difficult, if not impossible, to implement in a rural public computing scenario. In this thesis, I present a practical, unobtrusive and easy-to-use security architecture for rural public computing that uses a combination of physical and cryptographic mechanisms to protect user data, public computing infrastructure and handheld devices that access this infrastructure. Key contributions of this work include (a) a detailed threat analysis of such systems with a particular focus on rural Internet kiosks and handheld devices, (b) a security architecture for rural public computing infrastructure that does not require any specialized hardware, (c) an application-independent and backward-compatible security API for securely sending and receiving data between these systems and the Internet that can operate over delay tolerant links, (d) an implementation of my scheme for rural Internet kiosks and (e) a performance evaluation of this implementation to demonstrate its feasibility

    Context-Aware Privacy Protection Framework for Wireless Sensor Networks

    Get PDF

    Internet of Vehicles: Motivation, Layered Architecture, Network Model, Challenges, and Future Aspects

    Get PDF
    © 2013 IEEE. Internet of Things is smartly changing various existing research areas into new themes, including smart health, smart home, smart industry, and smart transport. Relying on the basis of 'smart transport,' Internet of Vehicles (IoV) is evolving as a new theme of research and development from vehicular ad hoc networks (VANETs). This paper presents a comprehensive framework of IoV with emphasis on layered architecture, protocol stack, network model, challenges, and future aspects. Specifically, following the background on the evolution of VANETs and motivation on IoV an overview of IoV is presented as the heterogeneous vehicular networks. The IoV includes five types of vehicular communications, namely, vehicle-to-vehicle, vehicle-to-roadside, vehicle-to-infrastructure of cellular networks, vehicle-to-personal devices, and vehicle-to-sensors. A five layered architecture of IoV is proposed considering functionalities and representations of each layer. A protocol stack for the layered architecture is structured considering management, operational, and security planes. A network model of IoV is proposed based on the three network elements, including cloud, connection, and client. The benefits of the design and development of IoV are highlighted by performing a qualitative comparison between IoV and VANETs. Finally, the challenges ahead for realizing IoV are discussed and future aspects of IoV are envisioned

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Towards mobile cloud computing with single sign-on access

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Journal of Grid Computing. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10723-017-9413-3The low computing power of mobile devices impedes the development of mobile applications with a heavy computing load. Mobile Cloud Computing (MCC) has emerged as the solution to this by connecting mobile devices with the “infinite” computing power of the Cloud. As mobile devices typically communicate over untrusted networks, it becomes necessary to secure the communications to avoid privacy-sensitive data breaches. This paper presents work on implementing MCC applications with secure communications. For that purpose, we built on COMPSs-Mobile, a redesigned implementation of the COMP Superscalar (COMPSs) framework aiming to MCC platorms. COMPSs-Mobile automatically exploits the parallelism inherent in an application and orchestrates its execution on loosely-coupled distributed environment. To avoid a vendor lock-in, this extension leverages on the Generic Security Services Application Program Interface (GSSAPI) (RFC2743) as a generic way to access security services to provide communications with authentication, secrecy and integrity. Besides, GSSAPI allows applications to take profit of more advanced features, such as Federated Identity or Single Sign-On, which the underlying security framework could provide. To validate the practicality of the proposal, we use Kerberos as the security services provider to implement SSO; however, applications do not authenticate themselves and require users to obtain and place the credentials beforehand. To evaluate the performance, we conducted some tests running an application on a smartphone offloading tasks to a private cloud. Our results show that the overhead of securing the communications is acceptable.This work has been supported by the Spanish Government (contracts TIN2012-34557, TIN2015-65316-P and grants BES-2013-067167, EEBB-I-15-09808 of the Research Training Program and SEV-2011-00067 of Severo Ochoa Program), by Generalitat de Catalunya (contract 2014-SGR-1051) and by the European Commission (ASCETiC project, FP7-ICT-2013.1.2 contract 610874). The second author was partially supported by the European Commission's Horizon2020 programme under grant agreement 653965 (AARC).Peer ReviewedPostprint (author's final draft

    A Survey on Attacks and Preservation Analysis of IDS in Vanet

    Get PDF
    Vehicular Ad-hoc Networks (VANETs) are the extremely famous enabling network expertise for Smart Transportation Systems. VANETs serve numerous pioneering impressive operations and prospects although transportation preservation and facilitation functions are their basic drivers. Numerous preservation allied VANETs functions are immediate and task imperative, which would entail meticulous assurance of preservation and authenticity. Yet non preservation associated multimedia operations, which would assist an imperative task in the future, would entail preservation assistance. Short of such preservation and secrecy in VANETs is one of the fundamental barriers to the extensive extended implementations of it. An anxious and untrustworthy VANET could be more hazardous than the structure without VANET assistance. So it is imperative to build specific that “life-critical preservation” data is protected adequate to rely on. Securing the VANETs including proper shield of the secrecy drivers or vehicle possessors is an extremely challenging assignment. In this research paper we review the assaults, equivalent preservation entails and objections in VANETs. We as well present the enormously admired common preservation guidelines which are based on avoidance as well recognition methods. Many VANETs operations entail system wide preservation support rather than individual layer from the VANETs’ protocol heap. This paper will also appraise the existing researches in the perception of holistic method of protection. Finally, we serve some potential future trends to attain system-wide preservation with secrecy pleasant preservation in VANETs. Keywords: VANET (Vehicular Ad-hoc Network), Routing algorithm, Vehicle preservation, IDS, attack, Secrec
    corecore