4,793 research outputs found

    Automatic Verification of Message-Based Device Drivers

    Full text link
    We develop a practical solution to the problem of automatic verification of the interface between device drivers and the OS. Our solution relies on a combination of improved driver architecture and verification tools. It supports drivers written in C and can be implemented in any existing OS, which sets it apart from previous proposals for verification-friendly drivers. Our Linux-based evaluation shows that this methodology amplifies the power of existing verification tools in detecting driver bugs, making it possible to verify properties beyond the reach of traditional techniques.Comment: In Proceedings SSV 2012, arXiv:1211.587

    Building Near-Real-Time Processing Pipelines with the Spark-MPI Platform

    Full text link
    Advances in detectors and computational technologies provide new opportunities for applied research and the fundamental sciences. Concurrently, dramatic increases in the three Vs (Volume, Velocity, and Variety) of experimental data and the scale of computational tasks produced the demand for new real-time processing systems at experimental facilities. Recently, this demand was addressed by the Spark-MPI approach connecting the Spark data-intensive platform with the MPI high-performance framework. In contrast with existing data management and analytics systems, Spark introduced a new middleware based on resilient distributed datasets (RDDs), which decoupled various data sources from high-level processing algorithms. The RDD middleware significantly advanced the scope of data-intensive applications, spreading from SQL queries to machine learning to graph processing. Spark-MPI further extended the Spark ecosystem with the MPI applications using the Process Management Interface. The paper explores this integrated platform within the context of online ptychographic and tomographic reconstruction pipelines.Comment: New York Scientific Data Summit, August 6-9, 201

    Domain-Type-Guided Refinement Selection Based on Sliced Path Prefixes

    Full text link
    Abstraction is a successful technique in software verification, and interpolation on infeasible error paths is a successful approach to automatically detect the right level of abstraction in counterexample-guided abstraction refinement. Because the interpolants have a significant influence on the quality of the abstraction, and thus, the effectiveness of the verification, an algorithm for deriving the best possible interpolants is desirable. We present an analysis-independent technique that makes it possible to extract several alternative sequences of interpolants from one given infeasible error path, if there are several reasons for infeasibility in the error path. We take as input the given infeasible error path and apply a slicing technique to obtain a set of error paths that are more abstract than the original error path but still infeasible, each for a different reason. The (more abstract) constraints of the new paths can be passed to a standard interpolation engine, in order to obtain a set of interpolant sequences, one for each new path. The analysis can then choose from this set of interpolant sequences and select the most appropriate, instead of being bound to the single interpolant sequence that the interpolation engine would normally return. For example, we can select based on domain types of variables in the interpolants, prefer to avoid loop counters, or compare with templates for potential loop invariants, and thus control what kind of information occurs in the abstraction of the program. We implemented the new algorithm in the open-source verification framework CPAchecker and show that our proof-technique-independent approach yields a significant improvement of the effectiveness and efficiency of the verification process.Comment: 10 pages, 5 figures, 1 table, 4 algorithm

    FPGA based remote code integrity verification of programs in distributed embedded systems

    Get PDF
    The explosive growth of networked embedded systems has made ubiquitous and pervasive computing a reality. However, there are still a number of new challenges to its widespread adoption that include scalability, availability, and, especially, security of software. Among the different challenges in software security, the problem of remote-code integrity verification is still waiting for efficient solutions. This paper proposes the use of reconfigurable computing to build a consistent architecture for generation of attestations (proofs) of code integrity for an executing program as well as to deliver them to the designated verification entity. Remote dynamic update of reconfigurable devices is also exploited to increase the complexity of mounting attacks in a real-word environment. The proposed solution perfectly fits embedded devices that are nowadays commonly equipped with reconfigurable hardware components that are exploited to solve different computational problems

    Agile Calibration Process of Full-Stack Simulation Frameworks for V2X Communications

    Get PDF
    Computer simulations and real-world car trials are essential to investigate the performance of Vehicle-to-Everything (V2X) networks. However, simulations are imperfect models of the physical reality and can be trusted only when they indicate agreement with the real-world. On the other hand, trials lack reproducibility and are subject to uncertainties and errors. In this paper, we will illustrate a case study where the interrelationship between trials, simulation, and the reality-of-interest is presented. Results are then compared in a holistic fashion. Our study will describe the procedure followed to macroscopically calibrate a full-stack network simulator to conduct high-fidelity full-stack computer simulations.Comment: To appear in IEEE VNC 2017, Torino, I

    SGXIO: Generic Trusted I/O Path for Intel SGX

    Full text link
    Application security traditionally strongly relies upon security of the underlying operating system. However, operating systems often fall victim to software attacks, compromising security of applications as well. To overcome this dependency, Intel introduced SGX, which allows to protect application code against a subverted or malicious OS by running it in a hardware-protected enclave. However, SGX lacks support for generic trusted I/O paths to protect user input and output between enclaves and I/O devices. This work presents SGXIO, a generic trusted path architecture for SGX, allowing user applications to run securely on top of an untrusted OS, while at the same time supporting trusted paths to generic I/O devices. To achieve this, SGXIO combines the benefits of SGX's easy programming model with traditional hypervisor-based trusted path architectures. Moreover, SGXIO can tweak insecure debug enclaves to behave like secure production enclaves. SGXIO surpasses traditional use cases in cloud computing and makes SGX technology usable for protecting user-centric, local applications against kernel-level keyloggers and likewise. It is compatible to unmodified operating systems and works on a modern commodity notebook out of the box. Hence, SGXIO is particularly promising for the broad x86 community to which SGX is readily available.Comment: To appear in CODASPY'1
    corecore