28,887 research outputs found

    Domination parameters with number 2: interrelations and algorithmic consequences

    Full text link
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 22-domination number, γw2(G)\gamma_{w2}(G), the 22-domination number, γ2(G)\gamma_2(G), the {2}\{2\}-domination number, γ{2}(G)\gamma_{\{2\}}(G), the double domination number, γ×2(G)\gamma_{\times 2}(G), the total {2}\{2\}-domination number, γt{2}(G)\gamma_{t\{2\}}(G), and the total double domination number, γt×2(G)\gamma_{t\times 2}(G), where GG is a graph in which a corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G)\gamma_R(G), and two classical parameters, the domination number, γ(G)\gamma(G), and the total domination number, γt(G)\gamma_t(G), we consider 13 domination invariants in graphs GG. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain some complexity results for the studied invariants, in particular regarding the existence of approximation algorithms and inapproximability bounds.Comment: 45 pages, 4 tables, 7 figure

    Domination parameters with number 2: Interrelations and algorithmic consequences

    Get PDF
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; EsloveniaFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Milanič, Martin. University of Primorska; EsloveniaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentin

    Quantifying the reheating temperature of the universe

    Get PDF
    The aim of this paper is to determine an exact definition of the reheat temperature for a generic perturbative decay of the inflaton. In order to estimate the reheat temperature, there are two important conditions one needs to satisfy: (a) the decay products of the inflaton must dominate the energy density of the universe, i.e. the universe becomes completely radiation dominated, and (b) the decay products of the inflaton have attained local thermodynamical equilibrium. For some choices of parameters, the latter is a more stringent condition, such that the decay products may thermalise much after the beginning of radiation-domination. Consequently, we have obtained that the reheat temperature can be much lower than the standard-lore estimation. In this paper we describe under what conditions our universe could have efficient or inefficient thermalisation, and quantify the reheat temperature for both the scenarios. This result has an immediate impact on many applications which rely on the thermal history of the universe, in particular gravitino abundance.Comment: Discussion improved. New section added. Version matches the one accepted for publicatio

    Data Reductions and Combinatorial Bounds for Improved Approximation Algorithms

    Full text link
    Kernelization algorithms in the context of Parameterized Complexity are often based on a combination of reduction rules and combinatorial insights. We will expose in this paper a similar strategy for obtaining polynomial-time approximation algorithms. Our method features the use of approximation-preserving reductions, akin to the notion of parameterized reductions. We exemplify this method to obtain the currently best approximation algorithms for \textsc{Harmless Set}, \textsc{Differential} and \textsc{Multiple Nonblocker}, all of them can be considered in the context of securing networks or information propagation

    Massive neutrinos and cosmology

    Get PDF
    The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of cosmological data, including the most recent analysis by the WMAP team. We also discuss how future cosmological experiments are expected to be sensitive to neutrino masses well into the sub-eV range.Comment: 122 pages, 23 figures, misprints corrected and references added. Review article to be published in Physics Report
    corecore