759 research outputs found

    Quality assessment of spaceborne sea surface salinity observations over the northern North Atlantic

    Get PDF
    Spaceborne sea surface salinity (SSS) measurements provided by the European Space Agency's (ESA) “Soil Moisture and Ocean Salinity” (SMOS) and the National Aeronautical Space Agency's (NASA) “Aquarius/SAC-D” missions, covering the period from May 2012 to April 2013, are compared against in situ salinity measurements obtained in the northern North Atlantic between 20°N and 80°N. In cold water, SMOS SSS fields show a temperature-dependent negative SSS bias of up to −2 g/kg for temperatures <5°C. Removing this bias significantly reduces the differences to independent ship-based thermosalinograph data but potentially corrects simultaneously also other effects not related to temperature, such as land contamination or radio frequency interference (RFI). The resulting time-mean bias, averaged over the study area, amounts to 0.1 g/kg. A respective correction applied previously by the Jet Propulsion Laboratory to the Aquarius data is shown here to have successfully removed an SST-related bias in our study area. For both missions, resulting spatial structures of SSS variability agree very well with those available from an eddy-resolving numerical simulation and from Argo data and, additionally they also show substantial salinity changes on monthly and seasonal time scales. Some fraction of the root-mean-square difference between in situ, and SMOS and Aquarius data (approximately 0.9 g/kg) can be attributed to short time scale ocean processes, notably at the Greenland shelf, and could represent associated sampling errors there

    Review of the CALIMAS Team Contributions to European Space Agency's Soil Moisture and Ocean Salinity Mission Calibration and Validation

    Get PDF
    Camps, Adriano ... et al.-- 38 pages, 22 figuresThis work summarizes the activities carried out by the SMOS (Soil Moisture and Ocean Salinity) Barcelona Expert Center (SMOS-BEC) team in conjunction with the CIALE/Universidad de Salamanca team, within the framework of the European Space Agency (ESA) CALIMAS project in preparation for the SMOS mission and during its first year of operation. Under these activities several studies were performed, ranging from Level 1 (calibration and image reconstruction) to Level 4 (land pixel disaggregation techniques, by means of data fusion with higher resolution data from optical/infrared sensors). Validation of SMOS salinity products by means of surface drifters developed ad-hoc, and soil moisture products over the REMEDHUS site (Zamora, Spain) are also presented. Results of other preparatory activities carried out to improve the performance of eventual SMOS follow-on missions are presented, including GNSS-R to infer the sea state correction needed for improved ocean salinity retrievals and land surface parameters. Results from CALIMAS show a satisfactory performance of the MIRAS instrument, the accuracy and efficiency of the algorithms implemented in the ground data processors, and explore the limits of spatial resolution of soil moisture products using data fusion, as well as the feasibility of GNSS-R techniques for sea state determination and soil moisture monitoringThis work has been performed under research grants TEC2005-06863-C02-01/TCM, ESP2005-06823-C05, ESP2007-65667-C04, AYA2008-05906-C02-01/ESP and AYA2010-22062-C05 from the Spanish Ministry of Science and Innovation, and a EURYI 2004 award from the European Science FoundationPeer Reviewe

    Sea Surface Salinity Retrievals from Aquarius Using Neural Networks

    Get PDF
    Even though the Sea Surface Salinity (SSS) retrieved from Aquarius are generally very close to in-situ measurements, the level of similarity varies with the region and with the circumstances of the observations (wind speed, sea surface temperature, etc.). SSS is currently retrieved from the brightness temperatures measured by Aquarius and applying the current theoretical model for the propagation and emission of the natural thermal radiation. In this contribution we consider an alternative retrieval approach based on a Neural Network (NN) with the goal of improving the subsets of Aquarius SSS data that are in poorer agreement within-situ measurements. The subset considered here are the SSS retrieved at latitudes higher than 30 . The output of the NN approach are compared against in-situ measurements using four statistical metrics (correlation coefficient, bias, RMSD and 5% trimmed range). The output of the NN and the nominal Aquarius SSS are compared against SSS values from in-situ measurements and from ocean models. From these comparisons it appears that the output of the NN matches the in-situ measurements better than the nominal Aquarius SSS

    Potential synergetic use of GNSS-R signals to improve the sea-state correction in the sea surface salinity estimation: Application to the SMOS mission

    Get PDF
    It is accepted that the best way to monitor sea surface salinity (SSS) on a global basis is by means of L-band radiometry. However, the measured sea surface brightness temperature (TB) depends not only on the SSS but also on the sea surface temperature (SST) and, more importantly, on the sea state, which is usually parameterized in terms of the 10-m-height wind speed (U10) or the significant wave height. It has been recently proposed that the mean-square slope (mss) derived from global navigation satellite system (GNSS) signals reflected by the sea surface could be a potentially appropriate sea-state descriptor and could be used to make the necessary sea state TB corrections to improve the SSS estimates. This paper presents a preliminary error analysis of the use of reflected GNSS signals for the sea roughness correction and was performed to support the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission; the orbit and parameters for the SMOS instrument were assumed. The accuracy requirement for the retrieved SSS is 0.1 practical salinity units after monthly averaging over 2◦ × 2◦ boxes. In this paper, potential improvements in salinity estimation are hampered mainly by the coarse sampling and by the requirements of the retrieval algorithm, particularly the need for a semiempirical model that relates TB and mss.Postprint (published version

    The Determination of Surface Salinity with the European SMOS Space Mission

    Get PDF
    The European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission aims at obtaining global maps of soil moisture and sea surface salinity from space for large-scale and climatic studies. It uses an L-band (1400–1427 MHz) Microwave Interferometric Radiometer by Aperture Synthesis to measure brightness temperature of the earth’s surface at horizontal and vertical polarizations ( h and v). These two parameters will be used together to retrieve the geophysical parameters. The retrieval of salinity is a complex process that requires the knowledge of other environmental information and an accurate processing of the radiometer measurements. Here, we present recent results obtained from several studies and field experiments that were part of the SMOS mission, and highlight the issues still to be solved

    2000 days of SMOS at the Barcelona Expert Centre: a tribute to the work of Jordi Font

    Get PDF
    Soil Moisture and Ocean Salinity (SMOS) is the first satellite mission capable of measuring sea surface salinity and soil moisture from space. Its novel instrument (the L-band radiometer MIRAS) has required the development of new algorithms to process SMOS data, a challenging task due to many processing issues and the difficulties inherent in a new technology. In the wake of SMOS, a new community of users has grown, requesting new products and applications, and extending the interest in this novel brand of satellite services. This paper reviews the role played by the Barcelona Expert Centre under the direction of Jordi Font, SMOS co-principal investigator. The main scientific activities and achievements and the future directions are discussed, highlighting the importance of the oceanographic applications of the mission.Peer ReviewedPostprint (published version

    Deriving vertical total electron content maps from SMOS full polarimetric data to compensate the Faraday rotation effect

    Get PDF
    The Faraday rotation is a geophysical effect that causes a rotation of the electromagnetic field components emitted by the Earth when it propagates through the ionosphere. It depends on the vertical total electron content (VTEC) of the ionosphere, the geomagnetic field, and the frequency. For satellite measurements at the L band, this effect is not negligible and must be compensated for. This is the case of the Soil Moisture and Ocean Salinity (SMOS) mission, where the measured polarimetric brightness temperature must be corrected from the Faraday rotation effect before the retrieval of the geophysical parameters. The Faraday rotation angle (FRA) can be estimated using a theoretical formulation that makes use of external sources for the VTEC and the geomagnetic field. Alternatively, it can be continuously retrieved from the SMOS full-polarimetric data. However, this is not straightforward due to the relatively poor radiometric sensitivity (thermal noise) and accuracy (spatial bias) of its payload MIRAS (Microwave Interferometer Radiometer by Aperture Synthesis). In this thesis, a methodology for estimating the total electron content of the ionosphere by using an inversion procedure from the measured rotation angle has been developed. These SMOS VTEC maps are derived from SMOS measurements in the Extended Alias-Free Field of View (EAF-FoV) by applying spatio-temporal filtering techniques to mitigate the radiometric errors present in the full-polarimetric measured brightness temperatures. Systematic error patterns found in the Faraday rotation angle retrieval have been characterized along the mission and corrected. The methodology is independent, not only of external databases and forward models, but also of the target that is being measured. Eventually, these SMOS-derived VTEC maps can then be used in the SMOS level 2 processors to improve the geophysical retrievals. The impact of using these SMOS VTEC maps to correct the FRA in the SMOS mission instead of the commonly used VTEC data from GPS has also been assessed, particularly over ocean, where the ionospheric effect is stronger. This assessment has demonstrated improvements in the spatial biases, in the stability of the brightness temperatures (especially in the third Stokes parameter), and in the reduction of the latitudinal gradient present in the third Stokes parameters. All these quality indicators point to a better quality of the geophysical retrievals.La rotación de Faraday es un efecto geofísico que causa un giro en las componentes del campo electromagnético emitido por la Tierra cuando éste se propaga a través de la ionosfera. Ésta depende del contenido vertical total de electrones (VTEC) en la ionosfera, el campo geomagnético y la frecuencia. En las medidas de los satélites que operan en banda L, este efecto no es despreciable y se debe compensar. Este es el caso de la misión SMOS (Soil Moisture and Ocean Salinity), por lo que el efecto de Faraday se tiene que corregir en las medidas polarimétricas captadas por el instrumento antes de obtener parámetros geofísicos. El ángulo de rotación de Faraday (FRA) se puede estimar con una fórmula teórica que usa bases de datos externas para el VTEC y el campo geomagnético. Alternativamente, se puede obtener de una manera continua a partir de los datos polarimétricos de SMOS. Sin embargo, esto no se logra con un cálculo directo debido a la pobre sensibilidad radiométrica (ruido térmico) y a la baja precisión (sesgos espaciales) que presenta el instrumento MIRAS (Microwave Interferometer Radiometer by apertura Synthesis), que se encuentra a bordo del satélite. En esta tesis, se desarrolla una metodología para estimar el VTEC de la ionosfera usando un proceso inverso a partir del ángulo de rotación medido. Estos mapas de VTEC se derivan de medidas en todo el campo de visión extendido en donde no hay aliasing. Para mitigar los errores radiométricos en las temperaturas de brillo polarimétricas, se aplican técnicas de filtrados temporales y espaciales. En el ángulo de rotación de Faraday recuperado se detectaron errores sistemáticos. Estos se caracterizaron a lo largo de la misión y se corrigieron. La metodología es independiente, no solo de bases de datos externas y modelos de océano, sino también de la superficie medida. Estos mapas de VTEC derivados de los datos SMOS se pueden usar en el procesador de nivel 2 para mejorar las recuperaciones geofísicas. Se ha evaluado el impacto de usar estos mapas para corregir el FRA en la misión, en vez de los datos de VTEC que comúnmente se emplean (mapas provenientes de datos de GPS), particularmente sobre océano, en donde los efectos de la ionosfera son más críticos. Esta verificación ha demostrado mejoras en el sesgo espacial, en la estabilidad de las temperaturas de brillo (especialmente en el tercer parámetro de Stokes) y en la reducción del gradiente latitudinal presente en el tercer parámetro de Stokes. Todos estos indicadores de calidad apuntan a la obtención de parámetros geofísicos de mejor calidad.Postprint (published version

    Comparing surface-soil moisture from the SMOS mission and the ORCHIDEE land-surface model over the Iberian Peninsula

    Get PDF
    The aim of this study is to compare the surface soil moisture (SSM) retrieved from ESA's Soil Moisture and Ocean Salinity mission (SMOS) with the output of the ORCHIDEE (ORganising Carbon and Hydrology In Dynamic EcosystEm) land surface model forced with two distinct atmospheric data sets for the period 2010 to 2012. The comparison methodology is first established over the REMEDHUS (Red de Estaciones de MEDición de la Humedad def Suelo) soil moisture measurement network, a 30 by 40. km catchment located in the central part of the Duero basin, then extended to the whole Iberian Peninsula (IP). The temporal correlation between the in-situ, remotely sensed and modelled SSM are satisfactory (r. >. 0.8). The correlation between remotely sensed and modelled SSM also holds when computed over the IP. Still, by using spectral analysis techniques, important disagreements in the effective inertia of the corresponding moisture reservoir are found. This is reflected in the spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates, which is poor (¿. ~. 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products.Peer ReviewedPostprint (published version
    corecore