21 research outputs found

    Symmetry & nonlinear compensation in fiber-optic transmissions

    Get PDF
    This thesis presents methods and practical implementations for compensating or suppressing signal distortions induced by fiber nonlinearity in long-distance transmissions. Our methods take advantage of the availability and already wide deployment of dispersion-compensating fibers with various choices of dispersions and dispersion slopes. The basic principle behind the methods is to choose suitable fibers and to arrange them properly into transmission lines manifesting scaled symmetries. Based on the nonlinear Schrodinger equation which describes the nonlinear and dispersive signal propagation in optical fibers, we have shown analytically that a scaled symmetry renders the nonlinear signal distortion by the first part of a transmission line to be largely undone by the second part, when an optical phase conjugator is installed in the middle of the line. Without a phase conjugator, the most detrimental nonlinear interactions among pulses within a wavelength channel may be significantly suppressed in a scaled symmetric line. We have identified two types of scaled symmetries: mirror and translation. Although mirror-symmetric systems have been discussed by other authors before, our own proposals and designs using high-dispersion fibers in conjunction with distributive Raman or erbium-doped amplification could make practical transmission systems manifesting nearly perfect mirror symmetries in the scaled sense and hence excellent nonlinear compensations. Firstly noted and investigated thoroughly by us, the concept of scaled translation symmetries in transmission lines may well spur the adoption of nonlinear compensation methods in practical transmission systems, since distributive amplifiers are no longer necessary for translation symmetries. To support our mathematical analyses, extensive computer simulations have been carried out to validate the effectiveness of our proposed systems, most of which assume practical system setups and parameters and could therefore serve as paradigms for real system designs

    Investigation of high bit rate optical transmission systems employing a channel data rate of 40 Gb/s

    Get PDF
    Das Ziel dieser Doktorarbeit war eine detaillierte Untersuchung von hoch bit ratigen optischen Übertragungssystemen mit einer Kanaldatenrate von 40 Gbit/s, die als wavelength division multiplexing (WDM) Systeme realisiert sind. Die Erkenntnisse, die durch umfangreiche numerische Untersuchungen gewonnen worden sind, wurden für die Erarbeitung von Designkriterien für die Übertragungssysteme der nächsten Generation verwendet. Der Schwerpunkt der Arbeit liegt dabei an 40 Gbit/s basierten WDM Systemen mit amplitudenmodulierten optischen Signalen. Nach einer umfangreichen Beschreibung der Funktionsweise und des Standes der Technik von Systemkomponenten, die in optischen Übertragungssystemen zum Einsatz kommen, wurden die Übertragungseffekte (z.B. chromatische Dispersion, Kerr-Effekt) erklärt und beschrieben, die eine störungsfreie Übertragung von optischen Pulsen in Übertragungsstrecken beeinträchtigen. Wegen der Fokussierung der Arbeit auf amplitudenmodulierte Systeme, wurden Erzeugungsmethoden und Spektraleneigenschaften von zahlreichen amplitude-shift-keying (ASK) basierten Modulationsformaten erklärt. Die untersuchten Modulationsformate wurden in drei Gruppen unterteilt: Non-return-to-zero (NRZ) basierende Formate, Return-to-zero (RZ) basierende Formate und neue Modulationsformate. Zu der Gruppe von NRZ basierten Modulationsformaten gehören konventionelles NRZ und Duobinary Modulation. In der Gruppe von RZ basierten Formaten wurden konventionelles RZ, Carrier-suppressed RZ (CSRZ) und Single-side-band RZ (SSB-RZ) eingeführt. Die Gruppe der neuen Formate beinhaltet Modulationsformate, die vom Autor im Rahmen der Arbeit vorgeschlagen und weiterentwickelt worden sind: Alternate-chirped NRZ (alCNRZ), Novel-chirped RZ (nCRZ), Alternate-polarized NRZ (alPNRZ) und Alternate-polarized RZ (alPRZ). Die Anforderungen, die bei der Entwicklung von neuen Modulationsformaten berücksichtigt worden sind, waren die Verbesserung der nichtlinearen Übertragungseigenschaften (z.B. nichtlineare Toleranz) der Übertragungsstrecke und eine effizientere Ausnutzung der zur Verfügung stehenden Systembandbreite (z.B. Erhöhung der spektralen Effizienz), wobei die vorgeschlagenen Modulationsformate kompatibel mit herkömmlichen Systemkonfigurationen (z.B. Empfänger) sein sollten. Aufgrund numerischer Natur der Arbeit wurden diverse Auswertekriterien eingeführt, die eine genaue Evaluierung der Übertragungsqualität ermöglichen und im Rahmen der Arbeit verwendet worden sind. Die Vor- und Nachteile der Auswertekriterien wie Bitfehlerrate (BER), Q-Faktor, optischer Signalrauschabstand (OSNR) und Augendiagramme wurden erläutert, und ein Vergleich zwischen allen Kriterien ist gemacht worden. Die 40 Gbit/s basierten numerischen Untersuchungen wurden für Einkanal- und Mehrkanalübertragungssysteme durchgeführt. Dabei wurde im Mehrkanalfall zwischen WDM-Systemen mit einer spektralen Effizienz von 0.4 bit/s/Hz und effizienteren dense WDM (DWDM) Systemen mit einer spektralen Effizienz von 0.8 bit/s/Hz unterschieden. Das Ziel dieser Untersuchungen war eine 40 Gbit/s Systemoptimierung durch Bestimmung von optimalen Übertragungsfasern, optimalen Dispersionskompensationsschemen und optimalen Leistungsbereichen, in denen die zukünftigen Systeme betrieben werden sollen. Dabei wurden alle Untersuchungen unter Berücksichtigung von unterschiedlichen Modulationsformaten durchgeführt, um einen Vergleich zwischen den Modulationsformaten gewährleisten zu können. Die Ergebnisse der Einkanaluntersuchungen haben gezeigt, dass NRZ basierten Modulationsformate durch eine hohe Dispersionstoleranz (ca. ±50 ps/nm) und eine niedrige nichtlineare Toleranz charakterisiert sind, was eine Beschränkung der maximaler Übertragungslänge verursacht. Die wichtigsten Störeffekte stellen in diesem Fall Selbstphasenmodulation (SPM) und die Interaktion zwischen SPM und chromatischer Dispersion dar. Die RZ basierten Verfahren zeichnen sich durch eine reduzierte Dispersionstoleranz (ca. ±25 ps/nm) aus, aber ermöglichen wegen erhöhter nichtlinearer Toleranz eine Verbesserung der maximalen Übertragungslänge verglichen zu NRZ Formaten. Die limitierenden Effekte in einer RZ basierten Übertragung sind Intrakanaleffekte (z.B. Intrakanalkreuzphasenmodulation IXPM), die bei höheren Signalleistungen von SPM begleitet sind. Die wichtigste Eigenschaft der neuen Modulationsverfahren ist die große nichtlineare Toleranz, die besonders bei alternierend polarisierten Modulationsverfahren (z.B. alPNRZ, alPRZ) zur Geltung kommt. Es wurde gezeigt, dass in allen untersuchten Fällen die Übertragungsqualität von eine mittleren Faserdispersion (ca. 4-8 ps/nm·km) profitiert und dass Dispersionskompensationsschemen mit einem bestimmten Prozent (variiert von Format zu Format) der Vorkompensation das Optimum darstellen. Die Mehrkanaluntersuchungen haben gezeigt, dass solange die spektrale Effizienz eines 40 Gbit/s basierten WDM systems klein (£ 0.4 bit/s/Hz) ist, die Einkanaleffekte (z.B. SPM, IXPM) die dominierenden Effekten sind. Demzufolge haben WDM und Einkanalsysteme ähnliche optimale Systemparameter, was ein einfaches System- und Kapazitätsupgrade ermöglichen würde. Des weiteren wurde gezeigt, dass für die Realisierung von DWDM Systemen eine schmalbandige optische Filterung sowohl am Sender als auch am Empfänger notwendig ist, deren Folge die Zerstörung der RZ Pulsform ist, wodurch die untersuchten RZ und NRZ basierten Modulationsformate identische Übertragungseigenschaften in DWDM Systemen aufweisen. Eine ähnliche Tendenz wurde auch bei manchen neuen Formaten (z.B. alCNRZ) beobachtet, was mit einem breiten Signalspektrum zu erklären ist. Auf der anderen Seite zeigten alternierend polarisierte Modulationsverfahren (z.B. alPNRZ) auch in DWDM Systemen eine Verbesserung hinsichtlich Filtertoleranz und Toleranz zu Mehrkanaleffekten (z.B. XPM), und empfählen sich als optimaler Kandidat für die zukünftigen 40 Gbit/s Systeme. Es wurde gezeigt, dass der optimale Fasertyp für eine DWDM Übertragung weitgehend unabhängig vom Modulationsformat ist und dass Faser eine möglichst hohe Dispersion besitzen sollen, um eine Unterdrückung der Mehrkanaleffekte ermöglichen zu können. Um zu erkennen, wie eine weitere Verbesserung der Übertragungseigenschaften in 40 Gbit/s Systemen ermöglicht werden könnte, wurden Verfahren wie orthogonal polarisierte Kanäle sowie phase shift keying (PSK) basierte Modulationsformate (z.B. DPSK, DQPSK) untersucht. Es wurde gezeigt, dass die orthogonale Polarisation zwischen den Kanälen als eine Verbesserungsmethode auf eine Übertragungslänge von ca. 200 km begrenzt ist. PSK-Formate ermöglichen eine Verbesserung der Übertragungseigenschaften der Strecke, wobei die notwendigen komplizierten Sender- und Empfängerrealisierungen vom Nachteil sein könnten.The focus of this work was set on 40 Gb/s based optical transmission systems with a varying number of channels and various spectral efficiencies in order to investigate the potential of 40 Gb/s technologies for the implementation in the next generation optical transmission networks. The results of this work can be used as design guidelines enabling a better understanding of propagation limitations in high bit rate transmission systems and give useful insights needed for the capacity upgrade of existing transmission lines. Using conventional amplitude-shift-keying (ASK) based modulation formats and by the author proposed novel modulation formats, the optimization of the system settings is performed in 40 Gb/s based single channel, wavelength division multiplex (WDM) and dense WDM (DWDM) transmission lines, in order to enable a comparison between different modulation formats in terms of the total transmission distance and the maximum achievable spectral efficiency. The signal generation and dominant transmission characteristics of various conventional non return-to-zero (NRZ), return-to-zero (RZ), duobinary, single side band RZ (SSB-RZ), carrier suppressed RZ (CSRZ) - and novel modulation formats alternate chirped NRZ (alCNRZ), novel chirped RZ (nCRZ), alternate polarized (N)RZ (alP(N)RZ) were introduced. The idea behind the development of novel modulation formats was the performance improvement of the existing transmission lines with possibly low signal generation complexity, employing conventional ASK-based receiver configuration for the signal detection. Dividing all modulation formats in two groups NRZ- and RZ-based - their tolerances to linear and nonlinear transmission disturbances are investigated in single channel transmission, indicating that an implementation of NRZ-based modulation formats provides a better dispersion tolerance, but suffers from strong nonlinear limitations. The use of novel NRZ-based formats enables a significant improvement of nonlinear transmission characteristics at the cost of a slightly increased transmitter complexity. RZ-based formats are characterized by an increased sensitivity to residual dispersion and a significant nonlinear tolerance. It is shown that an additional phase or polarization modulation of RZ pulses enables more compact signal spectra and a further improvement of nonlinear transmission robustness, thus enlarging the maximum transmission distance. Strong intra-channel limitations were indicated as the dominant transmission limitation especially in RZ-based formats characterized by strong interactions of consecutive pulses within the bit stream, due to the fast broadening of short optical pulses at 40 Gb/s. This effect is accompanied by self-phase modulation (SPM) group velocity dispersion (GVD) interplay, which becomes evident in both format groups at larger channel powers. It is shown that the dominance of intra-channel effects requires implementation of transmission fibers with moderate dispersion values. Furthermore, it was shown, that as long as intra-channel effects dominate transmission performance, the best dispersion compensation scheme is characterized by a small amount of dispersion pre-compensation, due to suppression of interactions between adjacent pulses. Thereby, right amount of dispersion pre-compensation is dependent on the modulation format in use, because of the interplay between the pulse internal chirp induced during modulation and the local dispersion in transmission line. The importance of pre-compensation increases in long-haul transmission lines employing dispersion compensation on a span-by-span basis, because of constructive superposition of intrachannel cross-phase modulation (IXPM) contributions in each span. The modulation formats employing polarization switching between consecutive pulses were identified as best solution for the performance enhancement in 40 Gb/s single channel based transmission lines. The 40 Gb/s based WDM systems with spectral efficiency of 0.4 bit/s/Hz showed identical transmission behavior as in single channel transmission for all modulation formats, which can be explained by the dominance of single-channel effects in 40 Gb/s systems with a channel spacing of 100 GHz. This leads to the conclusion that a system upgrade from single channel to WDM at 40 Gb/s channel data rate can be made using identical transmission infrastructure. As in the single channel case, RZ-based formats indicated a significant robustness to nonlinear propagation effects, which could be further improved by the use of novel modulation formats. Basically, RZ-based modulation formats outperform the NRZ-based ones in 40 Gb/s single channel and WDM transmissions, and transmission advantages of RZ based formats become even more evident with an increased transmission distance. It was shown that an increase of spectral efficiency to 0.8 bit/s/Hz in 40 Gb/s based DWDM systems results in increased pulse distortions, because of the reduced tolerance to implemented narrow-band filtering and larger impact of multi-channel nonlinearities (particularly XPM). The differences between RZ- and NRZ-based modulation formats vanish in DWDM transmissions, because of the distortion of RZ pulse shape due to narrow-band filtering needed at the transmitter side. It was shown that transmission performance of DWDM systems could profit from implementation of transmission fibers with a large chromatic dispersion, due to suppression of multi-channel effects independently of the modulation format in use. Accordingly, already deployed fibers (e.g. G.652) can be further used in next generation of DWDM transmission systems. Furthermore, considering concatenation of identical spans in a DWDM transmission line, it was observed that XPM-induced impacts superpose constructively from span to span independently of the implemented dispersion compensation scheme, resulting in an transmission penalty, which is in high power regime proportional to number of concatenated spans. This behavior enables together with already know transmission rules (e.g. Pmax) an efficient estimation of the maximum transmission performance and maximum transmission distance in 40 Gb/s DWDM systems. This work is completed by representation of some promising technologies, e.g. polarization orthogonality between the channels or phase-shift-keying (PSK) based modulation formats, which enable a further increase of spectral efficiency (beyond 0.8 bit/s/Hz) and an enhanced maximum transmission distance. The investigations of PSK-based modulation formats showed that not all recently proposed PSK-based system could compete with ASK-based formats for implementation in DWDM systems. Differential quadrature PSK (DQPSK) based modulation formats were identified as a potential candidate for the implementation in future spectrally efficient DWDM systems

    High Spectral Efficiency Fiber-Optic Transmission Systems Using Pilot Tones

    Get PDF
    Modern fiber-optic communication systems combine state-of-the-art components with powerful digital signal processing (DSP) to maximize the system spectral efficiency (SE). Systems rely on wavelength-division multiplexing, including superchannel transmission, to enable transmission over the available bandwidth which reaches about 10 THz when accounting for the so-called C and L bands. A superchannel is a set of densely packed wavelength channels viewed as a single unit. By treating the channels together, they can be packed more closely than what is normally feasible and sharing of resources among the channels within the superchannel can be considered. In this thesis we focus on the special case of superchannels formed using coherent optical frequency combs. A frequency comb is a multi-wavelength light source and comb-based superchannels consists of channels which are modulated on lines originating from a common comb. Frequency combs have phase-locked carriers, meaning that in contrast to the standard case of independent lasers, the channels within a comb-based superchannel are locked on a frequency grid. Moreover, it implies that the carrier offsets originating from a non-ideal laser source are shared among all comb lines.Shared carrier offsets can be exploited to reduce the complexity of the DSP used to effectively recover the data. A frequency comb is fully characterized by knowing the state of two of its lines, meaning that if this information is transferred to the receiver, one could compensate carrier offsets for all wavelength channels within the superchannel. By transmission of optical pilot tones, self-homodyne detection of a 50x20Gbaud PM-64QAM superchannel is demonstrated with 4% spectral overhead. While two tones are required to fully phase-lock two combs, a single tone is enough to enable significant relaxation of the DSP-requirements while at the same time requiring minimal additional complexity compared to standard intradyne systems. Superchannel transmission using a single shared pilot tone is demonstrated by transmission of a 51x24Gbaud PM-128QAM superchannel with a resulting SE of 10.3bits/s/Hz. The single pilot scheme is also evaluated for distances up to 1000km showing high robustness to both noise and fiber nonlinearities. Finally, the high gain low overhead combination of the single pilot-tone scheme was used in a record demonstration reaching a SE of 11.5bits/s/Hz for fully loaded C-band transmission

    Fibre and components induced limitations in high capacity optical networks

    Get PDF

    Techniques émergentes de codage espace-temps pour les systèmes de communications optiques

    Get PDF
    Research in the field of optical fiber communications is advancing at a rapid pace in order to meet the growing needs for higher data rates. The main driving forces behind these advancements are the availability of multiple degrees of freedom in the optical fiber allowing for multiplexing more data: amplitude, phase and polarization state of the optical field, along with time and wavelength are already used in the deployed optical transmission systems. Yet, these systems are approaching their theoretical capacity limits and an extra dimension "space" is investigated to achieve the next capacity leap. However, packing several data channels in the same medium brings with it differential impairments and crosstalk that can seriously deteriorate the performance of the system. In this thesis, we focus on recent optical MIMO schemes based on polarization division multiplexing (PDM) and space division multiplexing (SDM). In both, we assess the performance penalties induced by non-unitary crosstalk and loss disparities among the channels arising from imperfections in the used optical components (fibers, amplifiers, multiplexers...), and suggest novel MIMO coding techniques known as Space-Time (ST) codes, initially designed for wireless multi-antenna channels, to mitigate them.La recherche dans le domaine des communications sur fibres optiques avance à un rythme rapide afin de satisfaire des demandes croissantes de communications à débits élevés. Les principaux moteurs de ces avancements sont la multitude de degrés de liberté offerts par la fibre permettant ainsi la transmission de plus de données: l'amplitude, la phase et l'état de polarisation du champ optique, ainsi que le temps et la longueur d'onde sont déjà utilisés dans les systèmes de transmission optique déployés. Pourtant, ces systèmes s'approchent de leur limite fondamentale de capacité et un degré supplémentaire: "la dimension spatiale" est étudié pour réaliser un saut qualitatif majeur en termes de capacité de transmission. Cependant, l'insertion de plusieurs flux de données dans le même canal de propagation induit également des pertes différentielles et de la diaphonie entre les flux, ce qui peut fortement réduire la qualité du système de transmission. Dans cette thèse, nous nous concentrons sur les systèmes de transmission optique de type MIMO basés sur un multiplexage en polarisation ou en modes de propagation. Dans les deux cas, nous évaluons la dégradation de la performance provoquée par une interférence inter-canaux non-unitaire et des disparités de gain entre les canaux engendrées par des imperfections dans les composants optiques utilisés (fibres, amplificateurs, multiplexeurs...), et proposons pour les combattre, de nouvelles techniques de codage pour les systèmes MIMO nommées "codes Spatio-Temporels" (ST), préalablement conçues pour les systèmes radios multi-antennaires

    Cost-Effective Spectrally-Efficient Optical Transceiver Architectures for Metropolitan and Regional Links

    Get PDF
    The work presented herein explores cost-effective optical transceiver architectures for access, metropolitan and regional links. The primary requirement in such links is cost-effectiveness and secondly, spectral efficiency. The bandwidth/data demand is driven by data-intensive Internet applications, such as cloud-based services and video-on-demand, and is rapidly increasing in access and metro links. Therefore, cost-effective optical transceiver architectures offering high information spectral densities (ISDs > 1(b/s)/Hz) need to be implemented over metropolitan distances. Then, a key question for each link length and application is whether coherent- or direct (non-coherent) detection technology offers the best cost and performance trade-off. The performance and complexity limits of both technologies have been studied. Single polarization direct detection transceivers have been reviewed, focusing on their achievable ISDs and reach. It is concluded that subcarrier modulation (SCM) technique combined with single sideband (SSB) and high-order quadrature amplitude modulation (QAM) signaling, enabled by digital signal processing (DSP) based optical transceivers, must be implemented in order to exceed an ISD of 1 (b/s)/Hz in direct-detection links. The complexity can be shifted from the optical to the electrical domain using such transceivers, and hence, the cost can be minimized. In this regard, a detailed performance comparison of two spectrally-efficient direct detection SCM techniques, namely Nyquist-SCM and OFDM, is presented by means of simulations. It is found out that Nyquist-SCM format offers the transmission distances more than double that of OFDM due to its higher resilience to signal-signal beating interference. Following this, dispersion-precompensated SSB 4- and 16-QAM Nyquist-SCM signal formats were experimentally demonstrated using in-phase and quadrature (IQ)-modulators at net optical ISDs of 1.2 and 2 (b/s)/Hz over 800 km and 323 km of standard single-mode fibre (SSMF), respectively. These demonstrations represent record net optical ISDs over such distances among the reported single polarization wavelength division multiplexed (WDM) systems. Furthermore, since the cost-effectiveness is crucial, the optical complexity of Nyquist-SCM transmitters can be significantly reduced by using low-cost modulators and high-linewidth lasers. A comprehensive theoretical study on SSB signal generation using IQ- and dual-drive Mach-Zehnder modulators (DD-MZMs) was carried out to assess their performance for WDM direct detection links. This was followed by an experimental demonstration of WDM transmission over 242 km of SSMF with a net optical ISD of 1.5 (b/s)/Hz, the highest achieved ISD using a DD-MZM-based transmitter. Following the assessment of direct detection technology using various transmitter designs, cost-effective simplified coherent receiver architectures for access and metro networks have been investigated. The optical complexity of the conventional (polarization- and phase-diverse) coherent receiver is significantly simplified, i.e., consisting of a single 3 dB coupler and balanced photodetector, utilizing heterodyne reception and Alamouti polarization-time block coding. Although the achievable net optical ISD is halved compared to a conventional coherent receiver due to Alamouti coding, its receiver sensitivity provides significant gain over a direct detection receiver at M-ary QAM formats where M ≥16

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Optical multicarrier sources for spectrally efficient optical networks

    Get PDF
    During the last 30 years the capacity of commercial optical systems exceeded the network traffic requirements, mainly due to the extraordinary scalability of wavelength division multiplexing technology that has been successfully used to expand capacity in optical systems and meet increasing bandwidth requirements since the early 1990’s. Nevertheless, the rapid growth of network traffic inverted this situation and current trends show faster growing network traffic than system capacity. To enable further and faster growth of optical communication network capacity, several breakthroughs occurred during the last decade. First, optical coherent communications, which were the subject of intensive research in the 1980’s, were revived. This triggered the employment of advanced modulation formats. Afterwards, with the introduction of orthogonal frequency division multiplexing (OFDM) and Nyquist WDM modulation techniques in optical communication systems, very efficient utilisation of the available spectral bandwidth was enabled. In such systems the spectral guard bands between neighbouring channels are minimised, at the expense of stricter requirements on the performance of optical sources, especially the frequency (or wavelength) stability. Attractive solutions to address the frequency stability issues are optical multicarrier sources which simultaneously generate multiple phase correlated optical carriers that ensure that the frequency difference between the carriers is fixed. In this thesis, a number of optical multicarrier sources are presented and analysed, with special focus being on semiconductor mode-locked lasers and gain-switched comb sources. High capacity and spectrally efficient optical systems for short and medium reach applications (from 3 km up to 300 km), based on optical frequency combs as optical sources, advanced modulation formats (m-QAM) and modulation techniques (OFDM and Nyquist WDM) have been proposed and presented. Also, certain optoelectronic devices (i.e. semiconductor optical amplifier) and techniques (feed-forward heterodyne linewidth reduction scheme) have been utilised to enable the desired system performance

    Optical Fibre Communication Systems in the Nonlinear Regime

    Get PDF
    This thesis studies solutions to increase the capacity of optical communication systems in the presence of nonlinear effects. Extending the optical bandwidth and mitigating nonlinear distortions were identified as promising ways to increase the throughput in transmission system. Raman amplification was investigated as a potential replacement of the conventional erbium-doped fibre amplifier (EDFA). In this context, the performance of discrete and distributed Raman amplifiers was studied in the linear and nonlinear regimes. Despite the bandwidth benefits, discrete Raman amplifiers were shown to exhibit an increased noise figure and nonlinear distortions, compared to EDFA. Additionally, for the first time, a thorough study of digital back-propagation for distributed Raman amplified links was performed, allowing for higher transmission rates at the expense of an increase of 25% in the algorithm complexity. A major focus of this work was to investigate the growth of nonlinear distortions in optical communication systems as the bandwidth is expanded. This work was the first to experimentally validate the Gaussian noise model (and variations accounting for inter-channel Raman scattering) in a wideband transmission regime up to 9~THz. Using these models, the merit of increasing the optical bandwidth was addressed, showing a beneficial sublinear increase in throughput despite the growth of nonlinear effects. An alternative nonlinear compensation method is optical phase conjugation (OPC). The performance of OPC was experimentally evaluated over an installed fibre link, showing limited improvements when OPC is used with practical transmission constraints. To overcome this limitation, a new method combining OPC and Volterra equalisation was developed. This method was shown to enhance the performance of two limited nonlinear compensation techniques, offering an attractive trade-off between performance and complexity. The results obtained in this research allow for higher information throughput to be transmitted, and can be used to plan and design future communication system and networks around the world
    corecore