822 research outputs found

    Cross layer techniques for flexible transport protocol using UDP-Lite over a satellite network

    Get PDF
    Traditional real-time multimedia and streaming services have utilised UDP over RTP. Wireless transmission, by its nature, may introduce a variable, sometimes high bit error ratio. Current transport layer protocols drop all corrupted packets, in contrast, protocols such as UDP-Lite allow error-resilient applications to be supported in the networking stack. This paper presents experimental quantitative performance metrics using H.264 and UDP Lite for the next generation transport of IP multimedia, and discusses the architectural implications for enhancing performance of a wireless and/or satellite environment

    An efficient rate control algorithm for a wavelet video codec

    Get PDF
    Rate control plays an essential role in video coding and transmission to provide the best video quality at the receiver's end given the constraint of certain network conditions. In this paper, a rate control algorithm using the Quality Factor (QF) optimization method is proposed for the wavelet-based video codec and implemented on an open source Dirac video encoder. A mathematical model which we call Rate-QF (R - QF) model is derived to generate the optimum QF for the current coding frame according to the target bitrate. The proposed algorithm is a complete one pass process and does not require complex mathematical calculation. The process of calculating the QF is quite simple and further calculation is not required for each coded frame. The experimental results show that the proposed algorithm can control the bitrate precisely (within 1% of target bitrate in average). Moreover, the variation of bitrate over each Group of Pictures (GOPs) is lower than that of H.264. This is an advantage in preventing the buffer overflow and underflow for real-time multimedia data streaming

    An Effective Ultrasound Video Communication System Using Despeckle Filtering and HEVC

    Get PDF
    The recent emergence of the high-efficiency video coding (HEVC) standard promises to deliver significant bitrate savings over current and prior video compression standards, while also supporting higher resolutions that can meet the clinical acquisition spatiotemporal settings. The effective application of HEVC to medical ultrasound necessitates a careful evaluation of strict clinical criteria that guarantee that clinical quality will not be sacrificed in the compression process. Furthermore, the potential use of despeckle filtering prior to compression provides for the possibility of significant additional bitrate savings that have not been previously considered. This paper provides a thorough comparison of the use of MPEG-2, H.263, MPEG-4, H.264/AVC, and HEVC for compressing atherosclerotic plaque ultrasound videos. For the comparisons, we use both subjective and objective criteria based on plaque structure and motion. For comparable clinical video quality, experimental evaluation on ten videos demonstrates that HEVC reduces bitrate requirements by as much as 33.2% compared to H.264/AVC and up to 71% compared to MPEG-2. The use of despeckle filtering prior to compression is also investigated as a method that can reduce bitrate requirements through the removal of higher frequency components without sacrificing clinical quality. Based on the use of three despeckle filtering methods with both H.264/AVC and HEVC, we find that prior filtering can yield additional significant bitrate savings. The best performing despeckle filter (DsFlsmv) achieves bitrate savings of 43.6% and 39.2% compared to standard nonfiltered HEVC and H.264/AVC encoding, respectively

    Demo : distributed video coding applications in wireless multimedia sensor networks

    Get PDF
    Novel distributed video coding (DVC) architectures developed by the IBBT DVC group realize state-of-the-art video coding efficiency under stringent energy restrictions, while supporting error-resilience and scalability. Therefore, these architectures are particularly attractive for application scenarios involving low-complexity energy-constrained wireless visual sensors. This demo presents the scenarios, which are considered to be the most promising areas of integration for IBBT's DVC systems, considering feasibility and commercial applicability

    Generative Compression

    Full text link
    Traditional image and video compression algorithms rely on hand-crafted encoder/decoder pairs (codecs) that lack adaptability and are agnostic to the data being compressed. Here we describe the concept of generative compression, the compression of data using generative models, and suggest that it is a direction worth pursuing to produce more accurate and visually pleasing reconstructions at much deeper compression levels for both image and video data. We also demonstrate that generative compression is orders-of-magnitude more resilient to bit error rates (e.g. from noisy wireless channels) than traditional variable-length coding schemes

    QoS in Telemedicine

    Get PDF
    corecore