62,035 research outputs found

    Finite correlation length implies efficient preparation of quantum thermal states

    Get PDF
    Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraph) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.Comment: 16 pages, 4 figure

    How to Achieve the Capacity of Asymmetric Channels

    Full text link
    We survey coding techniques that enable reliable transmission at rates that approach the capacity of an arbitrary discrete memoryless channel. In particular, we take the point of view of modern coding theory and discuss how recent advances in coding for symmetric channels help provide more efficient solutions for the asymmetric case. We consider, in more detail, three basic coding paradigms. The first one is Gallager's scheme that consists of concatenating a linear code with a non-linear mapping so that the input distribution can be appropriately shaped. We explicitly show that both polar codes and spatially coupled codes can be employed in this scenario. Furthermore, we derive a scaling law between the gap to capacity, the cardinality of the input and output alphabets, and the required size of the mapper. The second one is an integrated scheme in which the code is used both for source coding, in order to create codewords distributed according to the capacity-achieving input distribution, and for channel coding, in order to provide error protection. Such a technique has been recently introduced by Honda and Yamamoto in the context of polar codes, and we show how to apply it also to the design of sparse graph codes. The third paradigm is based on an idea of B\"ocherer and Mathar, and separates the two tasks of source coding and channel coding by a chaining construction that binds together several codewords. We present conditions for the source code and the channel code, and we describe how to combine any source code with any channel code that fulfill those conditions, in order to provide capacity-achieving schemes for asymmetric channels. In particular, we show that polar codes, spatially coupled codes, and homophonic codes are suitable as basic building blocks of the proposed coding strategy.Comment: 32 pages, 4 figures, presented in part at Allerton'14 and published in IEEE Trans. Inform. Theor

    Information-theoretic Physical Layer Security for Satellite Channels

    Full text link
    Shannon introduced the classic model of a cryptosystem in 1949, where Eve has access to an identical copy of the cyphertext that Alice sends to Bob. Shannon defined perfect secrecy to be the case when the mutual information between the plaintext and the cyphertext is zero. Perfect secrecy is motivated by error-free transmission and requires that Bob and Alice share a secret key. Wyner in 1975 and later I.~Csisz\'ar and J.~K\"orner in 1978 modified the Shannon model assuming that the channels are noisy and proved that secrecy can be achieved without sharing a secret key. This model is called wiretap channel model and secrecy capacity is known when Eve's channel is noisier than Bob's channel. In this paper we review the concept of wiretap coding from the satellite channel viewpoint. We also review subsequently introduced stronger secrecy levels which can be numerically quantified and are keyless unconditionally secure under certain assumptions. We introduce the general construction of wiretap coding and analyse its applicability for a typical satellite channel. From our analysis we discuss the potential of keyless information theoretic physical layer security for satellite channels based on wiretap coding. We also identify system design implications for enabling simultaneous operation with additional information theoretic security protocols

    Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View

    Full text link
    These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on `Complex Systems' in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as `large graphical models'. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field.Comment: Lectures at Les Houches Summer School on `Complex Systems', July 2006, 44 pages, 25 ps figure

    Progressive Differences Convolutional Low-Density Parity-Check Codes

    Full text link
    We present a new family of low-density parity-check (LDPC) convolutional codes that can be designed using ordered sets of progressive differences. We study their properties and define a subset of codes in this class that have some desirable features, such as fixed minimum distance and Tanner graphs without short cycles. The design approach we propose ensures that these properties are guaranteed independently of the code rate. This makes these codes of interest in many practical applications, particularly when high rate codes are needed for saving bandwidth. We provide some examples of coded transmission schemes exploiting this new class of codes.Comment: 8 pages, 2 figures. Accepted for publication in IEEE Communications Letters. Copyright transferred to IEE

    Composite CDMA - A statistical mechanics analysis

    Get PDF
    Code Division Multiple Access (CDMA) in which the spreading code assignment to users contains a random element has recently become a cornerstone of CDMA research. The random element in the construction is particular attractive as it provides robustness and flexibility in utilising multi-access channels, whilst not making significant sacrifices in terms of transmission power. Random codes are generated from some ensemble, here we consider the possibility of combining two standard paradigms, sparsely and densely spread codes, in a single composite code ensemble. The composite code analysis includes a replica symmetric calculation of performance in the large system limit, and investigation of finite systems through a composite belief propagation algorithm. A variety of codes are examined with a focus on the high multi-access interference regime. In both the large size limit and finite systems we demonstrate scenarios in which the composite code has typical performance exceeding sparse and dense codes at equivalent signal to noise ratio.Comment: 23 pages, 11 figures, Sigma Phi 2008 conference submission - submitted to J.Stat.Mec

    Design and Analysis of Nonbinary LDPC Codes for Arbitrary Discrete-Memoryless Channels

    Full text link
    We present an analysis, under iterative decoding, of coset LDPC codes over GF(q), designed for use over arbitrary discrete-memoryless channels (particularly nonbinary and asymmetric channels). We use a random-coset analysis to produce an effect that is similar to output-symmetry with binary channels. We show that the random selection of the nonzero elements of the GF(q) parity-check matrix induces a permutation-invariance property on the densities of the decoder messages, which simplifies their analysis and approximation. We generalize several properties, including symmetry and stability from the analysis of binary LDPC codes. We show that under a Gaussian approximation, the entire q-1 dimensional distribution of the vector messages is described by a single scalar parameter (like the distributions of binary LDPC messages). We apply this property to develop EXIT charts for our codes. We use appropriately designed signal constellations to obtain substantial shaping gains. Simulation results indicate that our codes outperform multilevel codes at short block lengths. We also present simulation results for the AWGN channel, including results within 0.56 dB of the unconstrained Shannon limit (i.e. not restricted to any signal constellation) at a spectral efficiency of 6 bits/s/Hz.Comment: To appear, IEEE Transactions on Information Theory, (submitted October 2004, revised and accepted for publication, November 2005). The material in this paper was presented in part at the 41st Allerton Conference on Communications, Control and Computing, October 2003 and at the 2005 IEEE International Symposium on Information Theor
    • 

    corecore