5,326 research outputs found

    A note on the minimum distance of quantum LDPC codes

    Full text link
    We provide a new lower bound on the minimum distance of a family of quantum LDPC codes based on Cayley graphs proposed by MacKay, Mitchison and Shokrollahi. Our bound is exponential, improving on the quadratic bound of Couvreur, Delfosse and Z\'emor. This result is obtained by examining a family of subsets of the hypercube which locally satisfy some parity conditions

    Small polygons and toric codes

    Get PDF
    We describe two different approaches to making systematic classifications of plane lattice polygons, and recover the toric codes they generate, over small fields, where these match or exceed the best known minimum distance. This includes a [36,19,12]-code over F_7 whose minimum distance 12 exceeds that of all previously known codes.Comment: 9 pages, 4 tables, 3 figure

    Construction of Rational Surfaces Yielding Good Codes

    Get PDF
    In the present article, we consider Algebraic Geometry codes on some rational surfaces. The estimate of the minimum distance is translated into a point counting problem on plane curves. This problem is solved by applying the upper bound "\`a la Weil" of Aubry and Perret together with the bound of Homma and Kim for plane curves. The parameters of several codes from rational surfaces are computed. Among them, the codes defined by the evaluation of forms of degree 3 on an elliptic quadric are studied. As far as we know, such codes have never been treated before. Two other rational surfaces are studied and very good codes are found on them. In particular, a [57,12,34] code over F7\mathbf{F}_7 and a [91,18,53] code over F9\mathbf{F}_9 are discovered, these codes beat the best known codes up to now.Comment: 20 pages, 7 figure

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200
    corecore