19,619 research outputs found

    Error-Correcting codes fromk-resolving sets

    Get PDF
    We demonstrate a construction of error-correcting codes from graphs by means of k-resolving sets, and present a decoding algorithm which makes use of covering designs. Along the way, we determine the k-metric dimension of grid graphs (i.e., Cartesian products of paths)

    Permutation Decoding and the Stopping Redundancy Hierarchy of Cyclic and Extended Cyclic Codes

    Full text link
    We introduce the notion of the stopping redundancy hierarchy of a linear block code as a measure of the trade-off between performance and complexity of iterative decoding for the binary erasure channel. We derive lower and upper bounds for the stopping redundancy hierarchy via Lovasz's Local Lemma and Bonferroni-type inequalities, and specialize them for codes with cyclic parity-check matrices. Based on the observed properties of parity-check matrices with good stopping redundancy characteristics, we develop a novel decoding technique, termed automorphism group decoding, that combines iterative message passing and permutation decoding. We also present bounds on the smallest number of permutations of an automorphism group decoder needed to correct any set of erasures up to a prescribed size. Simulation results demonstrate that for a large number of algebraic codes, the performance of the new decoding method is close to that of maximum likelihood decoding.Comment: 40 pages, 6 figures, 10 tables, submitted to IEEE Transactions on Information Theor

    Phase ambiguity resolution for offset QPSK modulation systems

    Get PDF
    A demodulator for Offset Quaternary Phase Shift Keyed (OQPSK) signals modulated with two words resolves eight possible combinations of phase ambiguity which may produce data error by first processing received I(sub R) and Q(sub R) data in an integrated carrier loop/symbol synchronizer using a digital Costas loop with matched filters for correcting four of eight possible phase lock errors, and then the remaining four using a phase ambiguity resolver which detects the words to not only reverse the received I(sub R) and Q(sub R) data channels, but to also invert (complement) the I(sub R) and/or Q(sub R) data, or to at least complement the I(sub R) and Q(sub R) data for systems using nontransparent codes that do not have rotation direction ambiguity

    The Perfect Binary One-Error-Correcting Codes of Length 15: Part II--Properties

    Full text link
    A complete classification of the perfect binary one-error-correcting codes of length 15 as well as their extensions of length 16 was recently carried out in [P. R. J. \"Osterg{\aa}rd and O. Pottonen, "The perfect binary one-error-correcting codes of length 15: Part I--Classification," IEEE Trans. Inform. Theory vol. 55, pp. 4657--4660, 2009]. In the current accompanying work, the classified codes are studied in great detail, and their main properties are tabulated. The results include the fact that 33 of the 80 Steiner triple systems of order 15 occur in such codes. Further understanding is gained on full-rank codes via switching, as it turns out that all but two full-rank codes can be obtained through a series of such transformations from the Hamming code. Other topics studied include (non)systematic codes, embedded one-error-correcting codes, and defining sets of codes. A classification of certain mixed perfect codes is also obtained.Comment: v2: fixed two errors (extension of nonsystematic codes, table of coordinates fixed by symmetries of codes), added and extended many other result

    On Error Decoding of Locally Repairable and Partial MDS Codes

    Full text link
    We consider error decoding of locally repairable codes (LRC) and partial MDS (PMDS) codes through interleaved decoding. For a specific class of LRCs we investigate the success probability of interleaved decoding. For PMDS codes we show that there is a wide range of parameters for which interleaved decoding can increase their decoding radius beyond the minimum distance with the probability of successful decoding approaching 11, when the code length goes to infinity

    Semidefinite bounds for mixed binary/ternary codes

    Full text link
    For nonnegative integers n2,n3n_2, n_3 and dd, let N(n2,n3,d)N(n_2,n_3,d) denote the maximum cardinality of a code of length n2+n3n_2+n_3, with n2n_2 binary coordinates and n3n_3 ternary coordinates (in this order) and with minimum distance at least dd. For a nonnegative integer kk, let Ck\mathcal{C}_k denote the collection of codes of cardinality at most kk. For D∈CkD \in \mathcal{C}_k, define S(D):={C∈Ck∣D⊆C,∣D∣+2∣C∖D∣≤k}S(D) := \{C \in \mathcal{C}_k \mid D \subseteq C, |D| +2|C\setminus D| \leq k\}. Then N(n2,n3,d)N(n_2,n_3,d) is upper bounded by the maximum value of ∑v∈[2]n2[3]n3x({v})\sum_{v \in [2]^{n_2}[3]^{n_3}}x(\{v\}), where xx is a function Ck→R\mathcal{C}_k \rightarrow \mathbb{R} such that x(∅)=1x(\emptyset) = 1 and x(C)=0x(C) = 0 if CC has minimum distance less than dd, and such that the S(D)×S(D)S(D)\times S(D) matrix (x(C∪C′))C,C′∈S(D)(x(C\cup C'))_{C,C' \in S(D)} is positive semidefinite for each D∈CkD \in \mathcal{C}_k. By exploiting symmetry, the semidefinite programming problem for the case k=3k=3 is reduced using representation theory. It yields 135135 new upper bounds that are provided in tablesComment: 12 pages; some typos have been fixed. Accepted for publication in Discrete Mathematic
    • …
    corecore